Mobile QR Code QR CODE

REFERENCES

1 
Stanslaski S., Afshar P., Cong P., Giftakis J., Stypulkowski P., Carlson D., Linde D., Ullestad D., Avestruz A., Denison T., Jan 2012, Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation, IEEE Trans. Neural systems and rehabilitation engineering, Vol. 20, No. 4, pp. 410-421DOI
2 
Rhew H.-G., Jeong J., Fredenburg J.A., Dodani S., Patil P.G., Flynn M. P., 2014, A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management, IEEE J. Solid-State Circuits, Vol. 49, pp. 213DOI
3 
Liu X., Zhang M., Richardson A. G., Lucas T. H., Van der Spiegel J., 2017, Design of a closed-loop, bidirectional brain machine interface system with energy efficient neural feature extraction and PID control, IEEE Trans. Biomed. Circuits Syst., Vol. 11, pp. 729DOI
4 
Chun H., Yang Y., Lehmann T., Feb 2014, Safety ensuring retinal prosthesis with precise charge balance and low power consumption, IEEE Trans. Biomed. Circuits Syst., Vol. 8, No. 1, pp. 108-118DOI
5 
Ortmanns M., Rocke A., Gehrke M., Tiedtke H.-J., Dec 2007, A 232-channel epiretinal stimulator ASIC, IEEE J. Solid-State Circuits, Vol. 42, No. 12, pp. 2946-2959DOI
6 
Lee H.-M., Park H., Ghovanloo M., Sep 2013, A power-efficient wireless system with adaptive supply control for deep brain stimulation, IEEE J. Solid-State Circuits, Vol. 48, No. 9, pp. 2203-2216DOI
7 
Harrison R. R., Charles C., vol 38, A low-power low-noise CMOS amplifier for neural recording applications, IEEE J. Solid-State CircuitsDOI
8 
Banuaji A., Cha H.-K., Exp Briefs, A 15-V bidirectional ultrasound interface analog front-end IC for medical imaging using standard CMOS technology, IEEE Trans. Circuits Syst. IIDOI
9 
Son J.-Y., Cha H.-K., Jul 2020, An implantable neural stimulator IC with anodic current pulse modulation based active charge balancing, IEEE Access, Vol. 8, pp. 136449-136458DOI
10 
Shepherd R. K., Javel E., Apr 1999, Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties, Hearing Research, Vol. 130, No. 1-2, pp. 171-188DOI
11 
Loizos K., Marc R., Humayun M., Anderson J. R., Jones B. W., Lazzi G., Jun 2018, Increasing electrical stimulation efficacy in degenerated retina: stimulus waveform design in a multiscale computational model, IEEE Trans. Neural Systems and Rehabilitation Engineering, Vol. 26, No. 6, pp. 1111-1120DOI
12 
Qing K. Y., Ward M. P., Irazoqui P. P., Nov 2015, Burst-modulated waveforms optimize electrical stimuli for charge efficiency and fiber selectivity, IEEE Trans. Neural Systems and Rehabilitation Engineering, Vol. 23, No. 6, pp. 936-945DOI
13 
Geddes L. A., Bourland J. D., Jun 1985, The strength-duration curve, IEEE Trans. Biomed. Eng., Vol. BME-32, No. 6, pp. 458-459DOI
14 
Ranjandish R., Shoaei O., 2014, Polarity detection base pulse insertion for active charge balancing in electrical stimulation, 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, pp. 38-41DOI
15 
Yao L., Li P., Je M., 2015, A pulse-width-adaptive active charge balancing circuit with pulse-insertion based residual charge compensation and quantization for electrical stimulation appli-cations, 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC), Xiamen, pp. 1-4DOI
16 
Sooksood K., Stieglitz T., Ortmanns M., Jun 2010, An active approach for charge balancing in functional electrical stimulation, IEEE Trans. Biomed. Circuits Syst., Vol. 4, No. 3, pp. 162-170DOI
17 
Moradi S., Maghsoudloo E., Lotfi R., Sep 2014, A new approach to design safe and reliable electrical stimulator, Int. J. Biomed. Eng. Technol., Vol. 15, No. 4, pp. 305-316Google Search
18 
Ranjandish R., Schmid A., Oct 2017, An active charge balancing method based on anodic current variation monitoring, in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Turin, Italy, pp. 1-4DOI
19 
Maghsoudloo E., Rezaei M., Sawan M., Gosselin B., 2016, A new charge balancing scheme for electrical microstimulators based on modulated anodic stimulation pulse width, 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, pp. 2443-2446DOI
20 
Ranjandish R., Shoaei O., Schmid A., 2018, A Fully Fail-Safe Capacitive-Based Charge Metering Method for Active Charge Balancing in Deep Brain Stimulation, 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)DOI
21 
Kim H. S., Cha H.-K., Aug 2018, An ultra low-power low-noise neural recording analog front-end IC for implantable devices, IEIE J. Semiconductor Tech. and Sci., Vol. 18, No. 4, pp. 454-460DOI
22 
van Dongen M. N., Serdijn W. A., Feb 2016, A power-efficient multichannel neural stimulator using high-frequency pulsed excitation from an unfiltered dynamic supply, IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, pp. 61-71DOI
23 
Taschwer A., Butz N., Kohler M., Rossbach D., Manoli Y., Dec 2018, A Charge Balanced Neural Stimulator with 3.3 V to 49 V Supply Compliance and Arbitrary Programmable Current Pulse Shapes, in Proc. IEEE Biomedical Circuits Syst. (BIOCAS)DOI