Mobile QR Code QR CODE

References

1 
W. Ruan, et al, ``Effects of pattern characteristics on copper CMP,'' Journal of Semiconductors, vol. 30, no. 4, pp. 046001, 2009.DOI
2 
X. F. Brun, et al, ``Charaterization of 300nm low temperature SiCN PVD films for hybrid bonding application,'' Proc. of 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), pp. 548-555, 2023.DOI
3 
S. W. Kim, et al, ``Novel Cu/SiCN surface topography control for 1um pitch hybrid wafer-to-wafer bonding,'' Proc. of 2020 IEEE 70th Electronic Components and Technology Confernece (ECTC), pp. 216-222, 2020.DOI
4 
E. Beyne, et al, ``Scalable, sub 2$\mu$m Pitch, Cu/SiCN to Cu/SiCN hybrid wafer-to-wafer bonding technology,'' Proc. of 2017 IEEE Electron Devices Meeting (IEDM), pp. 32.4.1-32.4.4, 2017.DOI
5 
F. Nagano, et al, ``Origin of voids at the SiO${}_{2}$/SiO${}_{2}$ and SiCN/SiCN bonding interface using positron annihilation spectroscopy an electron spin resonance,'' ECS Journal of Solid State Science and Technology, vol. 12, no. 12, 033002, 2023.DOI
6 
L. Peng, et al, ``Advances in SiCN-SiCN bonding with high accuracy wafer-to-wafer (W2W) stacking technology,'' Proc. of 2018 IEEE Interconnect Technology Conference (IITC), pp. 179-181, 2018.DOI
7 
H. J. Kim, et al, ``Atomistic simulation investigation of various plasma surface activations in SiCN dielectric bonding,'' Proc. of 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), pp. 1633-1638, 2024.DOI
8 
H. S. Park, et al, ``Anti-oxidant copper layer by remote mode N2 plasma for low temperature copper-copper bonding,'' Scientific Reports, vol. 1 0, no. 1, 21720, 2020.DOI
9 
H. S. Park, et al, ``Low-temperature (260$^\circ$C) solderless Cu-Cu bonding for fine-pitch 3-D packaging and heterogeneous integration,'' IEEE Transactions on Components, Packging and Manufacturing Technology, vol. 11, no. 4, pp. 565-572, 2021.DOI
10 
C. W. Chen, et al, ``Optical properties and photoconductivity of amorphous silicon carbon nitride thin film and its application for UV detection,'' Diamond Related Materials, vol. 14, no. 3-7 pp. 1010-1013, 2005.DOI
11 
E. Ermakova, et al, ``Chemical structure, optical and dielectric properties of PECVD SiCN films obtained from novel precursor,'' Coatings, vol. 12, no. 11, pp. 1767-1783, 2022.DOI
12 
S. Chattopadhyay et al, ``Thermal diffusivity in amorphous silicon carbon nitride thin films by the traveling wave technique,'' Applied Physics Letters, vol. 79, no. 3, pp. 332-334, 2001.DOI
13 
F. Inoue, et al, ``Influence of composition of SiCN as interfacial layer on plasma activated direct bonding,'' ECS Journal of Soild State Science and Technology, vol. 8, no. 6, pp. 346-350, 2019.DOI
14 
S. Chattopadhyay et al, ``Optoelectronic and structural properties of good quality hydrogenated amorphous silicon carbide films deposited by hot wire assisted RF plasma deposition technique,'' Japanese Journal of Applied Physics, vol. 37, no. 10, pp. 5480-5484, 1998.DOI
15 
F. Nagano, et al, ``Characterization of silicon carbon nitride for low temperature wafer-to-wafer direct bonding,'' ECS Transactions, vol. 98, no. 4, pp. 21-31, 2020.DOI
16 
S. H. Hahn, et al, ``Contamination-free Cu/SiCN hybrid bonding process development for sub-$\mu$m pitch devices with enhanced bonding characteristics,'' Proc. of 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), pp. 1390-1396, 2023.DOI
17 
S. M. Son, et al, ``Characteristics of plasma-activated dielectric film surfaces for direct wafer bonding,'' Proc. of 2020 IEEE 70th Electronic Components and Technology Conference, pp. 2025-2032, 2020.DOI
18 
F. Inoue, et al, ``Influence of compoisition of SiCN film for surface activated bonding,'' ECS Transactions, vol. 86, no. 5, pp. 1159-168, 2018.DOI