Mobile QR Code QR CODE

References

1 
“Revision of part 15 of commission`s rules regarding ultra-wideband transmission systems”, FCC, pp. 02-48, Apr, 2022.URL
2 
T. S. Chu and H. Hashemi, “A short-range UWB impulse-radio CMOS sensor for human feature detection,” presented at the ISSCC 2011, San Francisco, USA, Apr. 294-296, 2011.DOI
3 
H. U. Mahmoode, J. Kim, and S. G. Lee, “Ultra-Wideband Pulse Generator with Simultaneous Optimization of Sidelobe Suppression and Essential Bandwidth,” IDEC Journal of Integrated Circuits and Systems., vol. 9, no. 3, pp. 25-30, Jul. 2023.DOI
4 
D. Zito and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans Microw Theory Tech., vol. 57, no. 8, pp. 1903-1914, Jul. 2009.DOI
5 
V. Jain and P. Heydari, “A 22–29-GHz UWB Pulse-Radar Receiver Front-End in 0.18-μm CMOS,” Opt. Lett., vol. 11, no. 2, pp. 115-117, Feb. 1986.DOI
6 
M. Pelissier and P. Vincent, “RF front end of UWB receiver based on super-regeneration,” presented at the IEEE international Conference on Ultra-Wideband, Sep. 2007.DOI
7 
P. Park and C. Kim, “A Centimeter Resolution, 10 m Range CMOS Impulse Radio Radar for Human Motion Monitoring” IEEE J Solid-State Circuits, vol. 49, no. 5, pp. 1125-1134, Mar. 2014.DOI
8 
Z. Jinxin and W. Lei, “An RF front-end with an automatic gain control technique for a U/V band CMMB receiver” J Semiconductors, vol. 32, no. 10, pp. 105006, Oct. 2011.DOI
9 
D. Kim and D. Im, “A Broadband PVT-Insensitive All-nMOS Noise-Canceling Balun-LNA for Subgigahertz Wireless Communication Applications” IEEE Microw. Wirel. Compon. Lett, vol. 31, no. 2, pp. 165-168, Dec. 2020.DOI
10 
S. Tiwari and J. Mukherjee, “An Inductor less Wideband Gm-Boosted Balun LNA With nMOS-pMOS Configuration and Capacitively Coupled Loads for Sub-GHz IoT Applications” IEEE Trans Circuit syst, vol. 68, no. 10, pp. 3204-3208, Apr. 2021DOI
11 
J. Kim and J. Silva-Martinez, “Wideband inductorless balun-LNA employing feedback for low-power low-voltage applications” IEEE Trans. Microw. Theory Tech, vol. 60, no. 9, pp. 2833-2842, Jul. 2012.DOI
12 
M. F. Maluludin and J. Kim, “A Wideband Low-Power Balun-LNA with Feedback and Current Reuse Technique” Electronics, vol. 11, no. 9, pp. 1372, Mar. 2022.DOI
13 
S. Kim, and K. Kwon, "A 50-MHz–1-GHz 2.3-dB NF noise-cancelling balun-LNA employing a modified current-bleeding technique and balanced loads" IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 546-554. Feb. 2018.DOI
14 
H. Wang, L. Zhang, and Z. Yu, "A wideband inductor-less LNA with local feedback and noise cancelling for low-power low-voltage applications." IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1993, Aug. 2010.DOI
15 
S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “A wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, Jun. 2008.DOI
16 
S. G. Kim and S. H. Jung, “High resolution CMOS IR-UWB radar for non-contact human vital signs detection,” presented at the RFIC 2020, Los Angeles, USA, Aug. 27-30, 2020.DOI
17 
C. W. Mangelsdorf, “A variable gain CMOS amplifier with exponential gain control,” presented at the Symposium on VLSI Circuit 2000, Honolulu, USA, Aug. 146-149, 2000.DOI
18 
H. Elwan and K. Pedrotti, “A Differential-Ramp Based 65 dB-Linear VGA Technique in 65 nm CMOS” IEEE J Solid-State Circuits, vol. 44, no. 9, pp. 2503-2514, Aug. 2009.DOI
19 
M. Q. Liu and N. Y. Kim, “A design of LNA and RFVGA with broadband and wide dynamic gain range for digital video broadcasting application” Microw. Opt. Technol. Lett., vol. 58, no. 2, pp. 418-423, Dec. 2015.DOI
20 
Razavi, “RF microelectronics”. vol. 2. New York: Prentice hall, 2012.URL
21 
B. Mazhabjafari, and H. Shamsi. “A 2.4 GHz sub 1-mW highly linear differential LNA using balun transformer gm-boosting technique.” Micro-electronics Jour., vol. 119, pp.105280, Oct. 2022.DOI
22 
Cheng, et al. “A 0.33 V 683μW K-Band Transformer-Based Receiver Front-End in 65 nm CMOS Technology.” IEEE Microwave and Wireless Components Letters, vol. 25, no. 3 pp. 184, Jan. 2015.DOI
23 
M. T. Hsu, et al. “Design of UWB low noise amplifier based on current-reuse and transformer-feedback technique.” IEEE EDSSC, Jun. 2015.DOI
24 
A. Mahdavi, et al. “A low power UWB CMOS low noise amplifier for 3.1–10.6 GHz in receivers.” International Symposium on Telecommunications (IST), Sep. 2016.DOI
25 
H. Yu, et al. “A 0.096-mm 2 1 –20-GHz Triple-Path Noise- Canceling Common-Gate Common-Source LNA With Dual Complementary pMOS–nMOS Configuration.” IEEE Transactions on Microwave and Theory and Techniques, vol. 68, no. 1 pp. 144, Jan. 2020.DOI
26 
Y. Li, et al. “A Novel Low-Power Notch-Enhanced Active Filter for Ultrawideband Interferer Rejected LNA.” IEEE Transactions on Microwave and Theory and Techniques, vol. 69, no. 3 pp. 1684, Feb. 2021.DOI