Mobile QR Code QR CODE

References

1 
S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “High-integrity gpu designs for critical real-time automotive systems,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp. 824-829.DOI
2 
C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten, “Towards an integrated GPU accelerated SoC as a flight computer for small satellites,” in 2019 IEEE Aerospace Conference, 2019, pp. 1-7.DOI
3 
I. Moghaddasi, S. Gorgin, and J.-A. Lee, “Dependable DNN Accelerator for Safety-critical Systems: A Review on the Aging Perspective,” IEEE Access, 2023.DOI
4 
A. Arunachalam, S. Kundu, A. Rahat, S. Banerjee, and K. Basu, “Fault Resilience of DNN Accelerators for Compressed Sensor Inputs,” in 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2022, pp. 329-332.DOI
5 
M. Riera, J. M. Arnau, and A. Gonzalez, “DNN pruning with principal component analysis and connection importance estimation,” Journal of Systems Architecture, vol. 122, p. 102336, 2022.DOI
6 
D. S. Huang et al., “Comprehensive device and product level reliability studies on advanced CMOS technologies featuring 7nm high-k metal gate FinFET transistors,” in 2018 IEEE International Reliability Physics Symposium (IRPS), 2018, pp. 6F-7.DOI
7 
C. Liu et al., “Systematical study of 14nm FinFET reliability: From device level stress to product HTOL,” in 2015 IEEE International Reliability Physics Symposium, 2015, pp. 2F-3.DOI
8 
I. Hill, P. Chanawala, R. Singh, S. A. Sheikholeslam, and A. Ivanov, “CMOS Reliability from Past to Future: A Survey of Requirements, Trends, and Prediction Methods,” IEEE Transactions on Device and Materials Reliability, vol. 22, no. 1. Institute of Electrical and Electronics Engineers Inc., pp. 1-18, Mar. 01, 2022. doi: 10.1109/TDMR.2021.3131345DOI
9 
I. Moghaddasi, A. Fouman, M. E. Salehi, and M. Kargahi, “Instruction-level NBTI stress estimation and its application in runtime aging prediction for embedded processors,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 8, pp. 1427-1437, 2018.DOI
10 
W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The impact of NBTI effect on combinational circuit: Modeling, simulation, and analysis,” IEEE Trans Very Large Scale Integr VLSI Syst, vol. 18, no. 2, pp. 173-183, 2009.DOI
11 
G. Zervakis et al., “Thermal-aware design for approximate dnn accelerators,” IEEE Transactions on Computers, vol. 71, no. 10, pp. 2687-2697, 2022.DOI
12 
M. A. Hanif and M. Shafique, “DNN-Life: An Energy-Efficient Aging Mitigation Framework for Improving the Lifetime of On-Chip Weight Memories in Deep Neural Network Hardware Architectures,” in Proceedings -Design, Automation and Test in Europe, DATE, Institute of Electrical and Electronics Engineers Inc., Feb. 2021, pp. 729-734. doi: 10.23919/DATE51398.2021.9473943DOI
13 
N. Landeros Muñoz, A. Valero, R. G. Tejero, and D. Zoni, “Gated-CNN: Combating NBTI and HCI aging effects in on-chip activation memories of Convolutional Neural Network accelerators,” Journal of Systems Architecture, vol. 128, Jul. 2022. doi: 10.1016/j.sysarc.2022.102553DOI
14 
P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-serial deep neural network computing,” in 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016, pp. 1-12.DOI
15 
J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: An energy-efficient deep neural network accelerator with fully variable weight bit precision,” IEEE J Solid-State Circuits, vol. 54, no. 1, pp. 173-185, 2018.DOI
16 
M. Capra, F. Conti, and M. Martina, “A Multi-Precision Bit-Serial Hardware Accelerator IP for Deep Learning Enabled Internet-of-Things,” in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 192-197.DOI
17 
V. Sakellariou, V. Paliouras, I. Kouretas, H. Saleh, and T. Stouraitis, “A multiplier-Free RNS-Based CNN accelerator exploiting bit-Level sparsity,” IEEE Trans Emerg Top Comput, pp. 1-16, 2023. doi: 10.1109/TETC.2023.3301590DOI
18 
G. Alsuhli, V. Sakellariou, H. Saleh, M. Al-Qutayri, B. Mohammad, and T. Stouraitis, “Conventional Number Systems for DNN Architectures,” in Number Systems for Deep Neural Network Architectures, Springer, 2023, pp. 17-25.DOI
19 
G. Jaberipur, “Redundant number system-based arithmetic circuits,” Arithmetic Circuits for DSP Applications, pp. 273-312, 2017.URL
20 
F. Oboril, F. Firouzi, S. Kiamehr, and M. Tahoori, “Reducing NBTI-induced processor wearout by exploiting the timing slack of instructions,” in Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, 2012, pp. 443-452.DOI
21 
Y. Chen, A. Calimera, E. Macii, and M. Poncino, “Characterizing the activity factor in NBTI aging models for embedded cores,” in Proceedings of the 25th edition on Great Lakes Symposium on VLSI, 2015, pp. 75-78.DOI
22 
V. B. Kleeberger, M. Barke, C. Werner, D. Schmitt-Landsiedel, and U. Schlichtmann, “A compact model for NBTI degradation and recovery under use-profile variations and its application to aging analysis of digital integrated circuits,” Microelectronics Reliability, vol. 54, no. 6, pp. 1083-1089, 2014.DOI
23 
M. Pedram and S. Nazarian, “Thermal modeling, analysis, and management in VLSI circuits: Principles and methods,” Proceedings of the IEEE, vol. 94, no. 8, pp. 1487-1501, 2006.DOI
24 
J. W. McPherson and J. W. McPherson, “Time-to-failure modeling,” Reliability Physics and Engineering: Time-To-Failure Modeling, pp. 37-49, 2013.URL