Mobile QR Code QR CODE


Cheong H.-S., 2006, Growth and Characteristics of Near-UV LED Structures on Wet-Etched Patterned Sapphire Substrate, J. Semicond. Technol. Sci., Vol. 6, No. 3, pp. 199-205Google Search
Kim S.Y., 2005, Enhanced Hole Injections in Organic Light Emitting Diode using Rhodium Oxide Coated Anode, J. Semicond. Technol. Sci., Vol. 5, No. 2, pp. 77-82Google Search
Khan A., 2008, Ultraviolet light-emitting diodes based on group three nitrides, Nat. Photonics, Vol. 2, No. 2, pp. 77-84DOI
Hirayama H., 2015, Recent Progress in AlGaN‐Based Deep‐UV LEDs, Electron Commun Jpn, Vol. 98, No. 5, pp. 1-8DOI
Tao H., 2019, Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping, IEEE Trans. Electron Dev, Vol. 66, No. 1, pp. 478-484DOI
Wang Y., 2020, Using a Multi-Layer Stacked AlGaN/GaN Structure to Improve the Current Spreading Performance of Ultraviolet Light-Emitting Diodes, Materials, Vol. 13, No. 2, pp. 454DOI
Verzellesi G., 2013, Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies, J. Appl. Phys., Vol. 114DOI
Li D., 2018, AlGaN photonics: recent advances in materials and ultraviolet devices, Adv. Opt. Photonics., Vol. 10, No. 1, pp. 43-110DOI
Maeda N., 2013, Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer, Phys. Status Solidi C, Vol. 10, No. 11, pp. 1521-1524DOI
Zhang J., 2001, Pulsed atomic layer epitaxy of quaternary AlInGaN layers, Appl. Phys. Letter., Vol. 79, No. 7, pp. 925-927DOI
Fareed R.S., 2004, High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition, Appl. Phys. Letter., Vol. 84, No. 11, pp. 1892-1894DOI
Nakamura S., 1998, Present status of InGaN/GaN/AlGaN-based laser diodes, J. Cryst. Growth., Vol. 189, pp. 820-825DOI
Knauer A., 2013, AlGaN layer structures for deep UV emitters on laterally overgrown AlN/sapphire templates, Phys. Status Solidi A., Vol. 210, No. 3, pp. 451-454DOI
Dong P., 2013, 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates, Appl. Phys. Lett., Vol. 102, No. 24, pp. 241113DOI
Fan X.C., 2015, Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer, Superlattice Microst., Vol. 88, No. 88, pp. 467-473DOI
Simon J., 2010, Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures, Science, Vol. 327, No. 5961, pp. 60-64DOI
Sun P., 2015, Advantages of AlGaN-based deep ultraviolet light-emitting diodes with a superlattice electron blocking layer, Superlattice Microst., Vol. 85, pp. 59-66DOI
Zhang Z.-H., 2016, On the hole accelerator for III-nitride light-emitting diodes, Appl. Phys. Lett., Vol. 108, No. 15, pp. 151105DOI
Zhang Z.-H., 2013, InGaN/GaN light-emitting diode with a polarization tunnel junction, Appl. Phys. Lett., Vol. 102, No. 19, pp. 193508DOI
Lin C.F., 2000, Properties of Mg activation in thermally treated GaN: Mg films, J. Appl. Phys., Vol. 88, No. 11, pp. 6515-6518DOI
Li L.P., 2017, A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes, Phys. Status Solidi A, Vol. 214, No. 6, pp. 1600937DOI
Bernardini F., 1997, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B., Vol. 56, No. 16, pp. 10024-10027DOI
Fiorentini V., 2002, Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures, Appl. Phys. Lett., Vol. 80, No. 7, pp. 1204-1206DOI
Piprek J., 2010, Efficiency droop in nitride-based light-emitting diodes, Phys. Status Solidi A, Vol. 207, No. 10, pp. 2217-2225DOI
Ambacher O., 2000, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, J. Appl. Phys., Vol. 87, No. 1, pp. 334-344DOI
Lang J., 2019, High performance of AlGaN deep-ultraviolet light emitting diodes due to improved vertical carrier transport by delta-accelerating quantum barriers, Appl. Phys. Lett., Vol. 114, No. 17, pp. 172105DOI