Mobile QR Code QR CODE

REFERENCES

1 
Buchbinder E., Speed Detection: LADAR, www-ee.eng.buffalo.edu/faculty/cartwright/teaching/ee494s99/presentations/lasar.pdf.Google Search
2 
McLeod D., Jacobson J., Hardy M., Embry C., Sep 2013, Autonomous Inspection using an Underwater 3D LiDAR, IEEE 2013 OCEANS, pp. 1-8Google Search
3 
Vercesi L., Fanori L., Bernardinis F. D., Liscidini A., Castello R., Sep 2018, TOF Lidar Development in Autonomous Vehicle, IEEE Optoelectronics Global Conference, pp. 185-190Google Search
4 
Kim et al. S. G., Nov 2013, A 1.8Gb/s/ch 10mW/ch -23dB crosstalk eight-channel transimpedance amplifier array for LADAR systems, IEEE International SoC Design Conf., pp. 115-118DOI
5 
Kurtti S., Nissinen J., Kostamovaara J., Mar 2017, A Wide Dynamic Range CMOS Laser Radar Receiver With a Time-Domain Walk Error Compensation Scheme, IEEE Trans. on Circuits and Systems I, Vol. 64, No. 3, pp. 550-561DOI
6 
Zheng H., Ma R., Liu M., Zhu Z., Mar 2018, High Sensitivity and Wide Dynamic Range Analog Front-End Circuits for Pulsed TOF 4-D Imaging LADAR Receiver, IEEE Sensors J., Vol. 18, No. 8, pp. 3114-3124DOI
7 
Vornicu I., Carmona-Galan R., Rodriguez-Vazquez A., Jan 2014, A CMOS Imager for Time-of-Flight and Photon Counting Based on Single Photon Avalanche Diodes and In-Pixel Time-to-Digital Converters, Romanian J. of Information Science and Tech., Vol. 17, No. 4, pp. 353-371Google Search
8 
Nissinen J., Nissinen I., Kostamovaara J., May 2009, Integrated Receiver Including Both Receiver Channel and TDC for a Pulsed Time-of-Flight Laser Rangefinder With cm-Level Accuracy, IEEE J. of Solid-State Circuits, Vol. 44, No. 5, pp. 1486-1497DOI
9 
Kurtti S., Kostamovaara J., Jan 2011, An Integrated Laser Radar Receiver Channel Utilizing a Time-Domain Walk Error Compensation Scheme, IEEE Trans. on Instrum. and Meas., Vol. 60, No. 1, pp. 146-157DOI
10 
Cho H. S., Kim C. H., Lee S. G., Oct 2014, A High-Sensitivity and Low-Walk Error LADAR Receiver for Military Application, IEEE Trans. on Circuits and Systems I, Vol. 61, No. 10, pp. 3007-3015DOI
11 
Dudek P., Szczepanski S., Hatfield J. V., Jul 2000, A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line, IEEE J. of Solid-State Circuits, Vol. 35, No. 2, pp. 1626-1635DOI
12 
Staszewski R. B., Vemulapalli S., Vallur P., Wallberg J., Balsara P. T., Mar 2006, 1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS, IEEE Trans. on Circuits and Systems II, Vol. 53, No. 3, pp. 220-224DOI
13 
Vercesi L., Fanori L., Bernardinis F. D., Liscidini A., Castello R., Aug 2010, Two-dimensions Vernier time-to-digital converter, IEEE J. of Solid-State Circuits, Vol. 45, No. 8, pp. 1504-1512DOI
14 
Lee M., Abidi A. A., Apr 2008, A 9b, 1.25ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue, IEEE J. of Solid-State Circuits, Vol. 43, No. 4, pp. 769-777DOI
15 
Straayer M. Z., Perrott M. H., Apr 2009, A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping, IEEE J. of Solid-State Circuits, Vol. 44, No. 4, pp. 1089-1098Google Search
16 
Yu J., Dai F. F., Jaeger R. C., Apr 2010, A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 m CMOS Technology, IEEE J. of Solid-State Circuits, Vol. 45, No. 4, pp. 830-842DOI