Mobile QR Code QR CODE


Seabaugh A. C., Zhang Q., Dec 2010, Low voltage tunnel transistors for beyond CMOS logic, Proc. IEEE 98, pp. 2095-2110DOI
Bernstein K., 2010, Device and architectures outlook for beyond CMOS switches, Proc. IEEE 98, pp. 2169-2184DOI
Schwierz F., 2010, Graphene transistors, Nature Nanotech, Vol. 5, pp. 487-496.DOI
Datta S., Liu H., Narayanan V., 2014, Tunnel FET Technology: A Reliability Perspective, Microelectronis Reability, Vol. 54, No. , pp. 861-874.DOI
Appenzeller J., 2004, Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors, Physics Review Letter, Vol. 93, No. 196805DOI
Zhu Y., Hudait M. K., 2013, Low-Power Tunnel Field Effect Transistors Using Mixed As and Sb Based Heterostructures, Nanotechnology Review, Vol. 2, pp. 637-678DOI
Mohata D., 2012, Demonstration of Improved Heteroepitaxy, Scaled Gate Stack and Reduced Interface States Enabling Heterojunction Tunnel FETs with High Drive Current and High on-off Ratio, VLSI technology (VLSIT) Symposium, pp. 53-44DOI
Zhao H., 2011, Improving the On-Current of In07Ga03As Tunneling Field-Effect-Transistors by p++/n+ Tunneling Junction, Applied. Phys. Lett., Vol. 98, No. , pp. -DOI
Noguchi M., 2015, High $I_{ON}$/$I_{OFF}$ and low subthreshold slope planar-type InGaAs tunnel field effect transistors with Zn-diffused source junctions, Journal of Applied Physics, Vol. 118, No. 4, pp. 045712-DOI
Tomioka K., Fukui T., 2014, Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length, Appl. Phys. Lett., Vol. 104, No. 073507DOI
Zhan Z., 2012, A tunnel-induced injection field-effect transistor with steep subthreshold slope and high on-off current ratio, Appl. Phys. Lett., Vol. 100, No. 113512DOI
Tomioka K., Fukui T., 2011, Tunnel field-effect transistor using InAs nanowire/Si heterojunction, Applied Physics Letter, Vol. 98, No. 083114DOI
Choi W. Y., 2007, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 $mV/dec$, IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745DOI
Bhuwalka K. K., Schulze J., Eisele I., 2004, Performance enhancement of vertical tunnel field-effect transistor with SiGe in the p+ layer, Jpn. J. Appl. Phys., Vol. 43, pp. 4073-4078Google Search
Wang L., 2010, Design of Tunneling Field-Effect Transistors Based on Staggered Heterojunctions for Ultralow-Power Applications, IEEE Electron Device Lett., Vol. 31, No. 5, pp. 431-433DOI
Moselund K. E., 2012, InAs-Si Nanowire Heterojunction Tunnel FETs, IEEE Electron Device Lett., Vol. 33, No. 10, pp. 1453-1455DOI
Appenzeller J., 2005, Comparing carbon nanotube transistors-The ideal choice: A novel tunneling device design, IEEE Trans. Electron Devices, Vol. 52, No. 12, pp. 2568-2576DOI
Poli S., 2008, Computational study of the ultimate scaling limits of CNT tunneling devices, IEEE Trans. Electron Devices, Vol. 55, No. 1, pp. 313-321DOI
Radisavljevic B., 2011, Single-layer MoS2 transistors, Nature Nanotech., Vol. 6, pp. 147-150DOI
Fang H., 2012, High Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts, Nano Lett., Vol. 12, No. 7, pp. 3788-3792DOI
Butler. S. Z., 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS nano, Vol. 7, No. 4, pp. 2898-2926DOI
Fiori G., 2014, Electronics based on two-dimensional materials, Nature Nanotech., Vol. 9, pp. 768-779DOI
Jariwala D., 2014, Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides, ACS Nano, Vol. 8, No. 2, pp. 1102-1120DOI
Britnell L., 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, Vol. 335, No. 6071, pp. 947-950DOI
Schwierz F., 2013, Graphene transistors: status, prospects, and problems, Proc. IEEE, Vol. 101, No. 7, pp. 1567-1584DOI
Novoselov K. S., 2004, Electric field effect in atomically thin carbon films, Science, Vol. 306, No. 5696, pp. 666-669DOI
Berger C., 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, Vol. 312, No. 5777, pp. 1191-1196DOI
Li X., 2008, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, Vol. 319, No. 5867, pp. 1229-1232DOI
Raza H., Kan E. C., 2008, Armchair graphene nanoribbons: Electronic structure and electric-field modulation, Physical Review B, Vol. 77, No. 24, pp. 245434DOI
Wu Y., 2011, Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model, Nanoscale Research Letters, Vol. 6, No. 62DOI
Bena C., Motambux G., 2009, Remarks on The Tight-Binding Model of Graphene, New Journal of Physics, Vol. 11, No. 095003Google Search
Gruneis A., 2008, Tight-Binding Description of The Quasiparticle Dispersion of Graphite and Few-Layer Graphene, Physical Review B, No. 78, pp. 205425DOI
Gruneis A., 2009, Angle-Resolved Photoemission Study of The Graphite Intercalation Compound KC8: A Key to Graphene, Physical Review B, Vol. 80, No. 075431DOI
Katsnelson M. I., Novoselov K. S., Geim A. K., 2006, Chiral tunnelling and the Klein paradox in graphene, Nature Phys., Vol. 2, No. , pp. 620-625DOI
Brey L., Fertig H. A., 2006, Electronic states of graphene nanoribbons, Phys. Rev. B, Vol. 73, No. 235411DOI
Son Y. W., Cohen M. L., Loui S. G., 2006, Energy gaps in graphene nanoribbons, Phys. Rev.Lett., Vol. 97, No. 216803DOI
Chen Z., 2007, Graphene nano-ribbon electronics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, No. 2, pp. 228-232DOI
Wang X., 2008, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys. Rev. Lett., Vol. 100, No. 20, pp. 206803DOI
Xia F., 2010, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett., Vol. 10, No. 2, pp. 715-718DOI
Son J. G., 2013, Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography, Advanced Materials, Vol. 25, No. 34, pp. 4723-4728DOI
Zschieschang U., 2015, Electrical Characteristics of Field-Effect Transistors based on Chemically Synthesized Graphene Nanoribbons, Advanced Electronic Materials, Vol. 1, No. 3DOI
Hwang W. S., 2015, Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates, APL Materials, Vol. 3, No. 1, pp. 011101DOI
David J. K., Register L. F., Banerjee S. K., 2012, Semiclassical Monte Carlo Analysis of Graphene FETs, IEEE Trans. Electron Dev., Vol. 59, No. 4, pp. 976-982DOI
Paussa A., 2014, Simulation of the Performance of Graphene FETs With a Semiclassical Model, Including Band-to-Band Tunneling, IEEE Trans. Electron Dev., Vol. 61, No. 5, pp. 1567-1574DOI
Pugnaghi C., 2014, Semianalytical quantum model for graphene field-effect transistors, J. Appl. Phys., Vol. 116, pp. 114505DOI
Fiori G., Ianaccoce G., 2007, Simulation of Graphene Nanoribbon Field-Effect Transistors, IEEE Electron Dev. Lett., Vol. 28, No. 8, pp. 760-762DOI
Zhao P., Chauhan J., 2009, Computational Study of Tunneling Transistor Based on Graphene Nanoribbon, Nano Lett., Vol. 9, pp. 684-680DOI
Noei M., Moradinasab M., Fathipour M., 2012, A computational study of ballistic graphene nanoribbon field effect transistors, Physica E, Vol. 44, pp. 1780-1786DOI
Mohamadpour H., Asgari A., 2012, Graphene nanoribbon tunneling field effect transistors, Physica E, Vol. 46, pp. 270-273DOI
Yousefi R., 2013, A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET, Superlattices & Microstructures, Vol. 60, pp. 169-178DOI
Chin S-K., 2010, Device Physics and Characteristics of Graphene Nanoribbon Tunneling FETs, IEEE Trans. Electron Dev., Vol. 57, No. 11, pp. 3144-3152DOI
Lam K-T., 2010, A Simulation Study of Graphene-Nanoribbon Tunneling FET With Heterojunction Channel, IEEE Electron Dev. Lett., Vol. 31, No. 6, pp. 555-557DOI
Chauhan J., Guo J., 2011, Assessment of high-frequency performance limits of graphene field-effect transistors, Nano Res., Vol. 4, No. 6, pp. 571-579DOI
Zhang Q., 2008, Graphene Nanoribbon Tunnel Transistors, IEEE Electron Dev. Lett., Vol. 29, No. 12, pp. 1344-1346DOI
Sarkar D., Krall M., Banerjee K., 2010, Electron-hole duality during band-to-band tunneling process in graphene-nanoribbon tunnel-field-effect-transistors, Appl. Phys. Lett., Vol. 97, No. 26, pp. 263109DOI
Putro C. B. S., 2014, A Theoretical Model of Band-to-band Tunneling Current in an Armchair Graphene Nanoribbon Tunnel Field-Effect Transistor, Adv. Mater. Res., Vol. 896, pp. 371-374Google Search
Suhendi E., 2014, Simulation of Dirac Tunneling Current of an Armchair Graphene Nanoribbon-Based p-n Junction Using a Transfer Matrix Method, Adv. Mater. Res., Vol. 974, pp. 205-209DOI
Suhendi E., 2014, Simulation of Drain Current of Double Gated Armchair Graphene Nanoribbon Field-Effect Transistor by Solving Dirac, Journal of Physics: Conf. Ser., Vol. 539, No. 012020Google Search
Suhendi E., 2015, Modeling of Dirac Electron Tunneling Current in Bipolar Transistor Based on Armchair Graphene Nanoribbon Using a Transfer Matrix Method, Adv. Com. Sci. Res., Vol. 5, pp. 164-166DOI
Abdolkader T. M., Hassan M. H., Fikry W., 2004, Solution of Schrödinger equation in double-gate MOSFETs using transfer matrix method, Electron Lett., Vol. 40, No. 20, pp. 1307-1308DOI
Shangguan W. Z., 2005, Compact gate-current model based on transfer-matrix method, J. Appl. Phys., Vol. 97, No. 123709DOI
Cattelan M., 2013, Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures, Chem Mater, Vol. 25, pp. 1490-1495DOI
Gebhardt J., 2013, Growth and electronic structure of boron-doped graphene, Phys Rev B, Vol. 87, No. 155437DOI
Tang Y. B., 2012, Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma, ACS Nano, Vol. 6, No. 3, pp. 1970-1978DOI
Wei D., 2009, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Letters, Vol. 9, No. 5, pp. 1752-1758DOI
Suhendi E., 2019, Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrdinger's equation, J. Semicond., Vol. 40, No. 6, pp. 062002Google Search
Tiwari M., 2015, Impact of Oxide Thickness on Gate Capacitance, Drain Current and Transconductance - A Comprehensive analysis on MOSFET, Nanowire FET and CNTFET Devices, Int. Jou. for Research in Emerging Science and Technology, Vol. 2, pp. 73-85Google Search
Bolotin K. I., 2008, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Communication, Vol. 146, pp. 351-355DOI
Du X., 2008, Approaching Ballistic Transport in Suspended Graphene, Nature Nanotechnology, Vol. 3, pp. 491-495DOI
Jena D., 2008, Zener Tunneling in Semiconducting Nanotube and Graphene Nanoribbon p−n Junctions, Appl. Phys. Lett., Vol. 93, pp. 112106DOI