Mobile QR Code QR CODE

References

1 
K. Kalantar-zadeh, N. Ha, J. Z. Ou, and K. J. Berean, "Ingestible sensors," ACS Sensors, vol. 2, no. 4, pp. 468-483, 2017.DOI
2 
Minneapolis Medtronic, USA MN, "PillCamTM Capsule Endoscopy User Manual," 2016. [Online]. Available: https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy.htmlURL
3 
Seoul IntroMedic, Republic of Korea, "Micro-CamTM Capsule Endoscope," 2018. [Online]. Available: http://www.intromedic.com/eng/item/goods_data/intromedic_Mirocam.pdfURL
4 
Center Olympus Valley, PA, USA, "ENDO-CAPSULE 10 System," 2013. [Online]. Available: https://medical.olympusamerica.com/products/endocapsuleURL
5 
K. Friedrich, S. Gehrke, W. Stremmel, et al., "First clinical trial of a newly developed capsule endoscope with panoramic side view for small bowel: a pilot study," J. Gastroenterol. Hepatol., vol. 28, no. 9, pp. 1496-1501, 2013.DOI
6 
Z. Liao, R. Gao, F. Li, et al., "Fields of application, diagnostic yield and findings of OMOM capsule endoscopy in 2400 Chinese patients," World J. Gastroenterol., vol. 16, pp. 2669-2676, 2010.DOI
7 
I. De Falco, G. Tortora, P. Dario, and A. Menciassi, "An integrated system for wireless capsule endoscopy in a liquid-distended stomach," IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 794-804, Mar. 2014.DOI
8 
J. Faerber et al., "In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna," IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 12, no. 1, pp. 95-105, Feb. 2018.DOI
9 
R. Fontana et al., "An innovative wireless endoscopic capsule with spherical shape IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 11, no. 1, pp. 143-152, Feb. 2017.DOI
10 
J. Keller, et al., "Inspection of the human stomach using remote-controlled capsule endoscopy: A feasibility study in healthy volunteers (with videos)," Gastrointest. Endosc., vol. 73, no. 1, pp. 22-28, 2011.DOI
11 
J. Jang et al., "4-Camera VGA-resolution capsule endoscope with 80Mb/s body-channel communication transceiver and Sub-cm range capsule localization," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Mar. 12, 2018, pp. 282-284.DOI
12 
Y. Gao et al., "An asymmetrical QPSK/OOK transceiver SoC and 15:1 JPEG encoder IC for multifunction wireless capsule endoscopy," IEEE J. Solid-State Circuits (JSSC), vol. 48, no. 11, pp. 2717-2733, Nov. 2013.DOI
13 
R. J. Saad and W. L. Hasler, "A technical review and clinical assessment of the wireless motility capsule," Gastroenterol. Hepatol., vol. 7, no. 12, pp. 795, 2011.URL
14 
H. Wang, X. Wang, A. Barfidokht, J. Park, J. Wang and P. P. Mercier, "A battery-powered wireless Ion sensing system consuming 5.5 nW of average power," IEEE J. Solid-State Circuits (JSSC), vol. 53, no. 7, pp. 2043-2053, Jul. 2018.DOI
15 
V. A. T. Dam, M. Goedbloed, and M. A. G. Zevenbergen, "Solid-contact reference electrode for ion-selective sensors," in Proceedings, vol. 1, no. 4, 2017.DOI
16 
M. E. Inda-Webb et al., "Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ," Nature, vol. 620, no. 7973, pp. 386-392, 2023.DOI
17 
S. Kadian et al., "Smart capsule for targeted detection of inflammation levels inside the GI tract," IEEE Trans. Biomed. Eng., vol. 71, no. 5, pp. 1565-1576, May. 2024.DOI
18 
C. Zhu, Y. Wen, T. Liu, H. Yang and K. Sengupta, "An ingestible Pill with CMOS fluorescence sensor array, bi-directional wireless interface and packaged optics for in-vivo bio-molecular sensing," IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 17, no. 2, pp. 257-272, Apr. 2023.DOI
19 
C. Zhu, L. Hong, H. Yang and K. Sengupta, "A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications," IEEE Sensors J., vol. 22, no. 24, pp. 24060-24074, Dec. 15, 2022.DOI
20 
K. Kalantar-Zadeh et al., "A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut," Nature Electron., vol. 1, no. 1, pp. 79-87, 2018.DOI
21 
J. Z. Ou et al., "Human intestinal gas measurement systems: in vitro fermentation and gas capsules," Trends Biotechnol., vol. 33, no. 4, pp. 208-213, 2015.DOI
22 
J. M. Stine, K. L. Ruland, J. A. Levy, L. A. Beardslee and R. Ghodssi, "Electrochemical sensor for ingestible capsule-based in-vivo detection of hydrogen sulfide," in Int. Conf. Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, Jun, 2023, pp. 2026-2029.DOI
23 
R. Belknap et al., "Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy," PLoS ONE, vol. 8, no. 1, Jan. 7, 2013.DOI
24 
M. M. Alam and E. B. Hamida, "Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities," Sensors, vol. 14, no. 5, pp. 9153-9209, Mar. 18, 2014.DOI
25 
C. M. d. Costa and P. Baltus, "Design methodology for industrial internet-of-things wireless systems," IEEE Sensors J., vol. 21, no. 4, pp. 5529-5542, Feb. 15, 2021.DOI
26 
IEEE Standard for information technology—telecommunications and information exchange between systems local and metropolitan area networks—specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), Dec. 14, 2016.URL
27 
IEEE Standard for information technology-- Local and metropolitan area networks-- specific requirements-- part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPAN), IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), June. 14, 2005.URL
28 
C. Gomez, J. Oller, and J. Paradells, "Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology," Sensors (Basel), vol. 12, no. 9, pp. 11734-11753, Jun. 26, 2012.DOI
29 
IEEE Standard for local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), Sept. 5, 2011.URL
30 
R. Cavallari, F. Martelli, R. Rosini, C. Buratti and R. Verdone, "A survey on wireless body area networks: technologies and design challenges," IEEE Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1635-1657, Feb. 13, 2014.DOI
31 
T. Hayajneh et al., "A survey of wireless technologies coexistence in WBAN: analysis and open research issues," Wireless Netw., vol. 20, pp. 2165-2199, May. 11, 2014.DOI
32 
M. Song et al., "A millimeter-scale crystal-less MICS transceiver for insertable smart pills," IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 6, pp. 1218-1229, Dec. 2020.DOI
33 
in FCC 47 CFR Part 95, Subpart 1, Medical Device Radio Communications Service, FCC, WA, DC, 2020.URL
34 
IEEE standard for local and metropolitan area networks - Part 15.6: Wireless Body Area Networks, IEEE Std 802.15.6-2012 , Feb. 29, 2012.URL
35 
M. Song et al., "30.8 A 3.5mm×3.8mm crystal-less MICS transceiver featuring coverages of ±160ppm carrier frequency offset and 4.8-VSWR antenna impedance for insertable smart pills," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Apr. 13, 2020, pp. 474-476.DOI
36 
M. -C. Lee et al., "A CMOS MedRadio transceiver with supply-modulated power saving technique for an implantable brain–machine interface system," IEEE J. Solid-State Circuits (JSSC), vol. 54, no. 6, pp. 1541-1552, June. 2019.DOI
37 
S. -J. Yun, J. Lee, J. Kang, C. Bae, J. Suh and S. J. Kim, "A low power fully integrated RF transceiver for medical implant communication," in 2018 IEEE Int. Symp. Circuits Syst. (ISCAS), Florence, Italy, pp. 1-4, 2018.DOI
38 
J. L. Bohorquez, A. P. Chandrakasan and J. L. Dawson, "A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications," IEEE J. Solid-State Circuits (JSSC), vol. 44, no. 4, pp. 1248-1259, Apr. 2009.DOI
39 
D. Pivonka, A. Yakovlev, A. S. Y. Poon and T. Meng, "A mm-sized wirelessly powered and remotely controlled locomotive implant," IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 6, no. 6, pp. 523-532, Dec. 2012.DOI
40 
A. Yakovlev, J. H. Jang and D. Pivonka, "An 11 μW sub-pJ/bit reconfigurable transceiver for mm-sized wireless implants," IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 10, no. 1, pp. 175-185, Feb. 2016.DOI
41 
L. Chang, Z. Zhang, Y. Li, S. Wang and Z. Feng, "Air-filled long slot leaky-wave antenna based on folded half-mode waveguide using silicon bulk micromachining technology for millimeter-wave band," IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3409-3418, Jul. 2017.DOI
42 
M. Yousaf et al., "An ultra-miniaturized antenna with ultra-wide bandwidth characteristics for medical implant systems," IEEE Access, vol. 9, pp. 40086-40097, Mar, 8. 2021.DOI
43 
S. A. A. Shah, I. A. Shah, S. Hayat and H. Yoo, "Ultra-miniaturized implantable antenna enabling multiband operation for diverse industrial IoMT devices," IEEE Trans. Antennas Propag., vol. 72, no. 2, pp. 1352-1362, Feb. 2024.DOI
44 
H. Li, Y. -X. Guo, C. Liu, S. Xiao and L. Li, "A miniature-implantable antenna for MedRadio-Band biomedical telemetry," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1176-1179, Jan. 27, 2015.DOI
45 
F. Faisal and H. Yoo, "A miniaturized novel-shape dual-band antenna for implantable applications," IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 774-783, Feb. 2019.DOI
46 
Z. Liu, Y. Zhang, Y. He and Y. Li, "A compact-size and high-efficiency cage antenna for 2.4-GHz WLAN access points," IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 12317-12321, Dec. 2022.DOI
47 
X. Jiang et al., "A compact mobile FM Transmitter with automatic embedded antenna tuning and low spurious emission in 65nm CMOS," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), Singapore, pp. 201-204, Nov. 2013.DOI
48 
S. Kousai et al., "Polar antenna impedance detection and tuning for efficiency improvement in a 3G/4G CMOS power amplifier," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 58-59.DOI
49 
M. Song et al., "An energy-efficient antenna impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications," IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 11, no. 6, pp. 1236-1244, Dec. 13, 2017.DOI
50 
Y. Yoon, "A 2.4-GHz CMOS power amplifier with an integrated antenna impedance mismatch correction system," IEEE J. Solid-State Circuits (JSSC), vol. 49, no. 3, pp. 608-621, Mar. 2014.DOI
51 
T. Sano et al., "A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 240-241.DOI
52 
F. -W. Kuo et al., "A Bluetooth low-energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75mW high-IF discrete-time receiver, and 3.6mW all-digital transmitter," in IEEE Symp. VLSI Circuits, Honolulu, HI, USA, June. 2016, pp. 1-2.DOI
53 
M. Song et al., "An energy-efficient antenna impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications," IEEE Trans. Biomed. Circuits Syst. (TBioCAS), vol. 11, no. 6, pp. 1236-1244, Dec. 2017.DOI
54 
F. -W. Kuo et al., "A Bluetooth low-energy transceiver with 3.7-mW all-digital transmitter, 2.75-mW high-IF discrete-time receiver, and TX/RX switchable on-chip matching network," IEEE J. Solid-State Circuits (JSSC), vol. 52, no. 4, pp. 1144-1162, April. 2017.DOI
55 
J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system," IEEE Trans. Microw. Theory Techn., vol. 52, no. 2, pp. 489-497, Feb. 2004.DOI
56 
M. Song, B. Bakkaloglu, and J. T. Aberle, "A CMOS adaptive antennaimpedance-tuning IC operating in the 850MHz-to-2GHz band," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2009, pp. 384-385.DOI
57 
E.-L. Firrao, A.-J. Annema, and B. Nauta, "An automatic antenna tuning system using only RF signal amplitudes," IEEE Trans. Circuits Syst. II, vol. 55, no. 9, pp. 833-837, Sep. 2008.DOI
58 
P. Sjoblom and H. Sjoland, "An adaptive impedance tuning CMOS circuit for ISM 2.4-GHz band," IEEE Trans. Circuits Syst. I, vol. 52, no. 9, pp. 1115-1124, June. 2005.DOI
59 
J. Lee, A. K. George and M. Je, "An ultra-low-noise swing-boosted differential relaxation oscillator in 0.18-μm CMOS," IEEE J. Solid-State Circuits (JSSC), vol. 55, no. 9, pp. 2489-2497, Sept. 2020.DOI
60 
M. Song, M. Ding and Y.-H. Liu, "An energy efficient and temperature stable digital FLL-based wakeup timer with time-domain temperature compensation," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 71, no. 7, pp. 3298-3302, July. 2024.DOI
61 
X. An, S. Pan, H. Jiang and K. A. A. Makinwa, "A 0.01 mm² 10MHz RC frequency reference with a 1-point on-chip-trimmed inaccuracy of ± 0.28% from -45ºC to 125ºC in 0.18μm CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2023, pp. 1-3.URL
62 
K.-S. Park et al., "A second-order temperature compensated 1 μW/MHz 100 MHz RC oscillator with ±140 ppm inaccuracy from −40 ºC to 95 ºC," in IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2021, pp. 1-4.DOI
63 
L. Xu, T. Jang, J. Lim, K. D. Choo, D. Blaauw and D. Sylvester, "A 510-pW 32-kHz crystal oscillator with high energy-to-noise-ratio pulse injection," in IEEE J. Solid-State Circuits (JSSC), vol. 57, no. 2, pp. 434-451, Feb. 2022.DOI
64 
J. Jung et al., "A fully integrated, low-noise, cost-effective single-crystal-oscillator-based clock management IC in 28-nm CMOS," IEEE J. Solid-State Circuits (JSSC), vol. 59, no. 6, pp. 1809-1822, June. 2024.DOI
65 
K. Laursen et al., "An ultrasonically-powered system for 1.06 mm3 implantable optogenetics and drug delivery dust," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, no. 10, pp. 3937-3941, Oct. 2023.DOI
66 
B. Wiser et al., "A 1.53 mm3 crystal-less standards-compliant bluetooth low energy module for volume constrained wireless sensors," in IEEE Symp. VLSI Circuits, Kyoto, Japan, June. 2019, pp. C84-C85.DOI
67 
J. Zhao, Y. Zhang, K. Zeng, W. Rhee and Z. Wang, "A 2.4-GHz cystal-less GFSK receiver using an auxiliary multiphase BBPLL for digital output demodulation with enhanced frequency scaling," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 4, pp. 1143-1147, April. 2021.DOI
68 
Y. Zhang, M. Ni, X. Huang, W. Rhee, and Z. Wang, “A 3.7-mW 2.4-GHz phase-tracking GFSK receiver with BBPLL-based demodulation,” IEEE J. Solid-State Circuits (JSSC), vol. 54, no. 2, pp. 336–345, Feb. 2019.DOI
69 
X. Chen, A. Alghaihab, Y. Shi, D. S. Truesdell, B. H. Calhoun and D. D. Wentzloff, "A crystal-less BLE transmitter with clock recovery from GFSK-modulated BLE packets," IEEE J. Solid-State Circuits (JSSC), vol. 56, no. 7, pp. 1963-1974, July. 2021.DOI
70 
G. Traverso et al., "First-in-human trial of an ingestible vitals-monitoring pill," Device, vol. 1, no. 5, 2023.DOI
71 
L.-X. Chuo et al., "A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm³ Wireless Sensor Node with 20m Non-Line-of-Sight Communication," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 132–133.DOI
72 
H. Fuketa et al., "A 0.3-V 1-μW super-regenerative ultrasound wake-up receiver with power scalability," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 64, no. 9, pp. 1027-1031, Sep. 2017.DOI
73 
X. Xiao et al., "A 65-nm CMOS wideband TDD front-end with integrated T/R switching via PA re-use," IEEE J. Solid-State Circuits, vol. 52, no. 7, pp. 1768-1782, Jul. 2017.DOI
74 
P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A sub-nW 2.4 GHz transmitter for low data-rate sensing applications," IEEE J. Solid-State Circuits (JSSC), vol. 49, no. 7, pp. 1463-1474, July. 2014.DOI
75 
Z. Chang et al., "23.3 A passive crystal-less Wi-Fi-to-BLE tag demonstrating battery-free FDD communication with smartphones," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2024, pp. 404-406.DOI
76 
C. Yang et al., "A 0.4mm³ battery-less crystal-less neural-recording SoC achieving 1.6cm back-scattering range with 2mm×2mm on-chip antenna," in IEEE Symp. VLSI Circuits, Honolulu, HI, USA, June. 2022, pp. 164-165.DOI
77 
A. Abdigazy et al., "End-to-end design of ingestible electronics," Nature Electron., vol. 1, pp. 1-17, Feb. 2024.DOI