Mobile QR Code QR CODE


Arias-Purdue A., Rowell P., Urteaga M., et al. , 2020, A 120-mW, Q-band InP HBT Power Amplifier with 46% Peak PAE, 2020 IEEE/MTT-S International Microwave Symposium (IMS), pp. 1291-1294DOI
Liu Z., Sharma T., Chappidi C. R., et al. , 2021, A 42-62 GHz Transformer-Based Broadband mm-Wave InP PA With Second-Harmonic Waveform Engineering and Enhanced Linearity, IEEE Trans. Microw. Theory Tech., Vol. 69, No. 1, pp. 756-773DOI
Zhang Y., Chen Y., Li Y., et al. , 2020., Modeling technology of InP heterojunction bipolar transistor for THz integrated circuit, Int. J. Numer. Model. Electron. Netw. Devices Fields, Vol. 33, No. 3, pp. e2579DOI
Jin X., Müller M., Sakalas P., et al. , 2021, Advanced SiGe:C HBTs at Cryogenic Temperatures and Their Compact Modeling With Temperature Scaling, IEEE J. Explor. Solid-State Comput. Devices Circuits, Vol. 7, No. 2, pp. 175-183DOI
Nidhin K., Pande S., Yadav S., et al. , 2020, An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition, IEEE Trans. Electron Devices, Vol. 67, No. 11, pp. 5069-5075DOI
Sun X., Zhang X., Sun Y., 2020., Thermal characterization and design of GaAs HBT with heat source drifting effects under large current operating condition, Microelectron. J., Vol. 100, pp. 104779DOI
Zhang A., Gao J., 2021, An Improved Nonlinear Model for Millimeter-Wave InP HBT Including DC/AC Dispersion Effects, IEEE Microw. Wirel. Compon. Lett., Vol. 31, No. 5, pp. 465-468DOI
Sun Y., Liu Z., Li X., et al. , 2019, Distributed Small-Signal Equivalent Circuit Model and Parameter Extraction for SiGe HBT, IEEE Access, Vol. 7, pp. 5865-5873DOI
Johansen T. K., Leblanc R., Poulain J., et al. , 2016, Direct Extraction of InP/GaAsSb/InP DHBT Equivalent-Circuit Elements From S-Parameters Measured at Cut-Off and Normal Bias Conditions, IEEE Trans. Microw. Theory Tech., Vol. 64, No. 1, pp. 115-124DOI
Zhang J., Liu M., Wang J., et al. , 2021, An analytic method for parameter extraction of InP HBTs small-signal model, Circuit WorldDOI
Qi J., Lyu H., Zhang Y., et al. , 2020, An improved direct extraction method for InP HBT small-signal model, J. Infrared Millim. Waves, Vol. 39, No. 11, pp. 295-299Google Search
Zhang A., Gao J., 2018, A new method for determination of PAD capacitances for GaAs HBTs based on scalable small signal equivalent circuit model, Solid-State Electron., Vol. 150, No. DEC., pp. 45-50DOI
Zhang J., Zhang L., Liu M., et al. , 2020, Systematic and Rigorous Extraction Procedure for InP HBT π-type Small-signal Model Parameters, J. Semicond. Technol. Sci., Vol. 20, No. 4, pp. 372-380DOI
Hu C., Horng J. B., Tseng H. C., 2011, Figures-of-merit genetic extraction for InGaAs lasers, SiGe low-noise amplifiers, ZnSe/Ge/GaAs HBTs, Int. J. Numer. Model. Electron. Netw. Devices FieldsDOI
Munshi K., Vempada P., Prasad S., et al. , 2003, Small signal and large signal modeling of HBT’s using neural networks, 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service TELSIKS 2003., Vol. 2, pp. 565-568DOI
Wu H., Cheng Q., Yan S., et al. , 2015, Transistor Model Building for a Microwave Power Heterojunction Bipolar Transistor, IEEE Microw. Mag., Vol. 16, No. 2, pp. 85-92DOI
Han X., Tan H., Liu W., et al. , 2022., Modeling of heterojunction bipolar transistors based on novel Wiener-type dynamic neural network, Int. J. RF Microw. Comput.-Aided Eng., Vol. 32, No. 4, pp. e23072DOI
Jarndal A., Husain S., Hashmi M., et al. , 2021, Large-Signal Modeling of GaN HEMTs Using Hybrid GA-ANN, PSO-SVR, GPR-Based Approaches, IEEE J. Electron Devices Soc., Vol. 9, pp. 195-208DOI
Hussein A. S., Jarndal A. H., 2018, Reliable Hybrid Small-Signal Modeling of GaN HEMTs Based on Particle-Swarm-Optimization, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 37, No. 9, pp. 1816-1824DOI
Huang G. B., 2014, An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels, Cogn. Comput., Vol. 6, No. 3, pp. 376-390DOI
Anupam S., Pani P., 2020, Flood forecasting using a hybrid extreme learning machine-particle swarm optimization algorithm (ELM-PSO) model, Model. Earth Syst. Environ., Vol. 6, No. 4, pp. 1-7DOI
Yao L., Xu S., Xiao Y., et al. , 2022, Fault Identification of Lithium-Ion Battery Pack for Electric Vehicle Based on GA Optimized ELM Neural Network, IEEE Access, Vol. 10, pp. 15007-15022DOI
Melchor-Leal J. M., Cantoral-Ceballos J. A., 2021, Force profile characterization for thermostatic bimetal using extreme learning machine, IEEE Lat. Am. Trans., Vol. 19, No. 02, pp. 208-216DOI
Tahir G. A., Chu K. L., 2020, An Open-Ended Continual Learning for Food Recognition Using Class Incremental Extreme Learning Machines, IEEE AccessDOI
Sheinman B., Wasige E., Rudolph M., et al. , 2002, A peeling algorithm for extraction of the HBT small-signal equivalent circuit, IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, pp. 2804-2810DOI
Bataller-Mompeán M., Martínez-Villena J. M., Rosado-Muñoz A., et al. , 2016, Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks, IEEE Trans. Ind. Inform., Vol. 12, No. 3, pp. 1114-1123DOI
Wang Y., Cao F., Yuan Y., 2011, A study on effectiveness of extreme learning machine, Neurocomputing, Vol. 74, No. 16, pp. 2483-2490DOI
Gu R., Shen F., Huang Y., et al. , 2013, A parallel computing platform for training large scale neural networks, 2013 IEEE International Conference on Big Data, pp. 376-384DOI
Liu X., Lin S., Fang J., et al. , 2015, Is Extreme Learning Machine Feasible? A Theoretical Assessment (Part I), IEEE Trans. Neural Netw. Learn. Syst., Vol. 26, No. 1, pp. 7-20DOI
Eberhart R., Kennedy J., 1995, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43DOI
Cai W., Yang J., Yu Y., et al. , 2020, PSO-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting, IEEE Access, Vol. 8, pp. 6505-6514DOI
Wang S., Zhang J., Liu M., et al. , 2022, Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network, Circuits Syst. Signal Process., Vol. 41, No. 4, pp. 1834-1847DOI
Lu H. Y., Cheng W., Chen G., et al. , 2013, Direct Extraction Method of InP HBT Small-Signal Model, Applied Mechanics and Materials, vol. 347-350, Trans Tech Publications Ltd, pp. 1621-1624DOI
Gao J. J., Li X. P., Wang H., et al , 2006, An approach to determine small-signal model parameters for InP-based heterojunction bipolar transistors, IEEE Transactions on Semiconductor Manufacturing, Vol. 19, No. 1, pp. 138-145DOI
Bousnina S., Mandeville P., Kouki A. B., et al , 2002, Direct parameter-extraction method for HBT small-signal model, in IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 2, pp. 529-536DOI