Mobile QR Code QR CODE

References

1 
Conti F., Schilling R., Schiavone P.D., Pullini A., Rossi D., Gürkaynak F.K., Muehlberghuber M., Gautschi M., Loi I., Haugou G., Mangard S., Benini L., 2017, An IoT endpoint system-on-chip for secure and energy-efficient near-sensor analytics, IEEE Trans. on Circuits and Systems I: Regular Papers, Vol. 64, pp. 2481-2494DOI
2 
Magno M., Aoudia F.A., Gautier M., Berder O., Benini L. WULoRa., 2017, an energy efficient IoT end-node for energy harvesting and heterogeneous communication, Proc. of Int. Conf. on Design, Automation & Test in Europe, pp. 1528-1533DOI
3 
Fayyazi A., Ansari M., Kamal M., Afzali-Kusha A., Pedram M., 2018, An ultra low-power memristive neuromorphic circuit for internet of things smart sensors, IEEE Internet of Things Journal, Vol. 5, pp. 1011-1022DOI
4 
Ciccia S., Giordanengo G., Vecchi G., 2019, Energy Efficiency in IoT Networks: Integration of Reconfigurable Antennas in Ultra Low-Power Radio Platforms Based on System-on-Chip, IEEE Internet of Things Journal, Vol. 6, pp. 6800-6810DOI
5 
Han K., Lee S., Lee J.j., Lee W., Pedram M., 2019, TIP : A Temperature Effect Inversion-Aware Ultra-Low Power System-on-Chip Platform, 2019 IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 1-6DOI
6 
Alioto M., 2012, Ultra-low power VLSI circuit design demystified and explained: A tutorial, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, pp. 3-29DOI
7 
Rossi D., Pullini A., Loi I., Gautschi M., Gürkaynak F.K., Teman A., Constantin J., Burg A., Miro-Panades I., Beigne E., Clermidy F., Abouzeid F., Flatresse P., Benini L., 2016, 193 MOPS/mW @ 162 MOPS, 0.32V to 1.15V voltage range multi-core accelerator for energy efficient parallel and sequential digital processing, Proc. of Symp. on Low-Power and High-Speed Chips and SystemsDOI
8 
Gautschi M., Schiavone P.D., Member S., Traber A., Loi I., Pullini A., Rossi D., Flamand E., Gürkaynak F.K., Benini L., 2017, Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices, IEEE Trans. on Very Large Scale Integration Systems, Vol. 25, pp. 2700-2713DOI
9 
Karnik T., Kurian D., Aseron P., Dorrance R., Alpman E., Nicoara A., Popov R., Azarenkov L., Moiseev M., Zhao L., Ghosh S., Misoczki R., Gupta A., M A., Muthukumar S., Bhandari S., Satish Y., Jain K., Flory R., Kanthapanit C., Quijano E., Jackson B., Luo H., Kim S., Vaidya V., Elsherbini A., Liu R., Sheikh F., Tickoo O., Klotchkov I., Sastry M., Sun S., Bhartiya M., Srinivasan A., Hoskote Y., Wang H., De V., 2018, A cm-scale self-powered intelligent and secure IoT edge mote featuring an ultra-low-power SoC in 14 nm tri-gate CMOS, Proc. of Int. Solid-State Circuits Conference Digest of Technical Papers, pp. 46-48DOI
10 
Pu Y., Shi C., Samson G., Park D., Beraha R., Newham A., Lin M., Rangan V., Chatha K., Butterfield D., Attar R., 2018, A 9-mm2 ultra-low-power highly integrated 28-nm CMOS SoC for internet of things, IEEE Journal of Solid-State Circuits, Vol. 53, pp. 936-948DOI
11 
STMicroelectronics. , STM32L151C6: ultra-low-power ARM Cortex-M3 MCU with 32 Kbytes flash, 32 MHz CPU, USB, https://www.st.com/en/microcontrollers/stm32l151c6.html. Accessed 15 Feb. 2022URL
12 
Maxim integrated. , MAX32626: ultra-low power, high-performance ARM Cortex-M4 with FPU-based microcontroller for wearables, http://www.maximintegrated.com/en/products/microcontrollers/MAX32626.html. Accessed 15 Feb. 2022URL
13 
NXP. , K32W0x MCUs for wireless IoT applications, https://www.nxp.com/docs/en/fact-sheet/K32W0XFS.pdf. Accessed 15 Feb. 2022URL
14 
Lee W., Wang Y., Cui T., Nazarian S., Pedram M., 2015-October, Dynamic thermal management for FinFET-based circuits exploiting the temperature effect inversion phenomenon, Proceedings of the International Symposium on Low Power Electronics and Design 2015, pp. 105-110DOI
15 
Cai E., Marculescu D., TEI-Turbo: Temperature effect inversion-aware turbo boost for finfet-based multi-core systems, 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015 2016, pp. 500-507DOI
16 
Rossi D., Pullini A., Loi I., Gautschi M., Gürkaynak F.K., Bartolini A., Flatresse P., Benini L., 2016, A 60 gops/w,− 1.8 v to 0.9 v body bias ulp cluster in 28 nm utbb fd-soi technology, Solid-State Electronics, Vol. 117, pp. 170-184DOI
17 
Lee W., Han K., Wang Y., Cui T., Nazarian S., Pedram M., 2017, TEI-power: Temperature effect inversion-aware dynamic thermal management, ACM Transactions on Design Automation of Electronic Systems, Vol. 22DOI
18 
Park J., Cha H., 2017, Aggressive voltage and temperature control for power saving in mobile application processors, IEEE Trans. on Mobile Computing, Vol. 17, pp. 1233-1246DOI
19 
Han K., Lee J.J., Lee J., Lee W., Pedram M., 2018, TEI-NoC: Optimizing ultralow power NoCs exploiting the temperature effect inversion, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 37, pp. 458-471DOI
20 
2019, TEI-ULP: Exploiting Body Biasing to Improve the TEI-Aware Ultralow Power Methods, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 38, pp. 1758-1770DOI
21 
Han K., Lee S., Oh K.I., Bae Y., Jang H., Lee J.J., Lee W., Pedram M., 2021, Developing TEI-Aware Ultralow-Power SoC Platforms for IoT End Nodes, IEEE Internet of Things Journal, Vol. 8, pp. 4642-4656DOI
22 
Chien Y.C., Wang J.S., 2018, A 0.2 v 32-Kb 10T SRAM with 41 nW Standby Power for IoT Applications, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, pp. 2443-2454DOI
23 
Sarfraz K., He J., Chan M., 2017, A 140-mV Variation-Tolerant Deep Sub-Threshold SRAM in 65-nm CMOS, IEEE Journal of Solid-State Circuits, Vol. 52, pp. 2215-2220DOI
24 
Verma N., Chandrakasan A.P., 2008, A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy, IEEE Journal of Solid-State Circuits, Vol. 43, pp. 141-149DOI
25 
Chang I.J., Kim J.J., Park S.P., Roy K., 2009, A 32 kb 10T sub-threshold sram array with bit-interleaving and differential read scheme in 90 nm CMOS, IEEE Journal of Solid-State Circuits, Vol. 44, pp. 650-658DOI
26 
Chiu Y.W., Hu Y.H., Tu M.H., Zhao J.K., Chu Y.H., Jou S.J., Chuang C.T., 2014, 40 Nm Bit-Interleaving 12T Subthreshold Sram With Data-Aware Write-Assist, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 61, pp. 2578-2585DOI
27 
Kim D., Chandra V., Aitken R., Blaauw D., Sylvester D., 2011, Variation-aware static and dynamic writability analysis for voltage-scaled bit-interleaved 8-T SRAMs, Proceedings of the International Symposium on Low Power Electronics and Design, pp. 145-150DOI
28 
Maiz J., Hareland S., Zhang K., Armstrong P., 2003, Characterization of Multi-bit Soft Error events in advanced SRAMs, Technical Digest - International Electron Devices Meeting, pp. 519-522DOI
29 
Qazi M., Sinangil M.E., Chandrakasan A.P., 2011, Challenges and directions for low-voltage SRAM, IEEE Design and Test of Computers, Vol. 28, pp. 32-43DOI
30 
Zhai B., Hanson S., Blaauw D., Sylvester D., 2008, A Variation-Tolerant Sub-200 mV 6-T Subthreshold SRAM, IEEE Journal of Solid-State Circuits, Vol. 43, pp. 2338-2348DOI
31 
Seevinck E., List F.J., Lohstroh J., 1987, Static-noise margin analysis of MOS SRAM cells, IEEE Journal of Solid-State Circuits, Vol. 22, pp. 748-754DOI
32 
Kim T., Liu J., Keane J., Kim C.H., 2008, A 0.2 V, 480 kb Subthreshold SRAM With 1 k Cells Per Bitline for Ultra-Low-Voltage Computing, IEEE Journal of Solid-State Circuits, Vol. 43, pp. 518-529DOI
33 
Islam A., Hasan M., 2012, A technique to mitigate impact of process, voltage and temperature variations on design metrics of SRAM Cell, Microelectronics Reliability, Vol. 52, pp. 405-411DOI
34 
Hamdioui S., 2001, Testing multi-port memories: Theory and practice"Google Search
35 
Slayman C. W., Sept. 2005, Cache and memory error detection, correction, and reduction techniques for terrestrial servers and workstations, in~IEEE Transactions on Device and Materials Reliability, Vol. 5, No. 3, pp. 397-404DOI
36 
Baeg S., Wen S., Wong R., Aug. 2009, SRAM Interleaving Distance Selection With a Soft Error Failure Model, in~IEEE Transactions on Nuclear Science, Vol. 56, No. 4, pp. 2111-2118DOI
37 
Frustaci F., Khayatzadeh M., Blaauw D., Sylvester D., Alioto M., May 2015, SRAM for Error-Tolerant Applications With Dynamic Energy-Quality Management in 28 nm CMOS, in IEEE Journal of Solid-State Circuits, Vol. 50, No. 5, pp. 1310-1323DOI