Mobile QR Code QR CODE


Patra B., Incandela R. M., van Dijk J. P. G., Homulle H. A. R., Song L., Shahmohammadi M., Staszewski R. B., Vladimirescu A., Babaie M., Sebastiano F., Charbon E., Sep 2018, Cryo-CMOS Circuits and Systems for Quantum Computing Applications, IEEE Journal of Solid-State Circuits, Vol. 53, No. 1, pp. 1-13DOI
Charbon E., Sebastiano F., Vladimirescu A., Homulle H., Visser S., Song L., Incandela R. M., Dec 2016, Cryo-CMOS for quantum computing, in IEEE Electron Devices Meeting (IEDM), pp. 343-346DOI
Averin D. V., Goldman V. J., Dec 2001, Quantum computation with quasiparticles of the fractional quantum Hall effect, Solid State Communications, Vol. 121, No. , pp. 25-28DOI
Mola M., Hill S., Goy P., Gross M., Jan 2000, Instrumentation for Millimeter-wave Magneto-electrodynamic Investigations of Low-Dimensional Conductors, Superconductors, Rev. Sci. Inst., Vol. 71, No. 1, pp. 186-200DOI
Yalcin T., Boero G., 2008, Single-chip detector for electron spin resonance spectroscopy, Review of Sci. Inst., Vol. 79, No. 094105DOI
Correia J. H., de Graaf G., Bartek M., Wolffenbuttel R. F., Nov 2002, A single-chip CMOS optical microspectrometer with light-to-frequency converter, bus interface, IEEE Journal of Solid-State Circuits, pp. 1344-1347Google Search
Hong L., Sengupta K., Dec 2017, Fully Integrated Optical Spectrometer in Visible, Near-IR in CMOS, IEEE Transactions on Biomedical Circuits Systems, Vol. 11, No. 6, pp. 1176-1191DOI
Sankaran S., O K. K., Jul 2005, Schottky Barrier Diodes for mm-Wave, Detection in a Foundry CMOS Process, IEEE Electron Device Letts., Vol. 26, No. 7, pp. 492-494DOI
Mao C., Nallani C. S., Sankaran S., Seok E., O K. K., May 2009, 125-GHz Diode Frequency Doubler in 0.13-${\mathrm{\mu}}$m CMOS, IEEE J. Solid-State Circuits, Vol. 44, No. 5, pp. 1531-1538DOI
Han R., Zhang Y., Coquillat D., Viderlier H., Kanp W., Brown E., O K. K., Nov 2011, A 280-GHz Schottky Diode Detector in 130-nm Digital CMOS, IEEE J. Solid-State Circuits, Vol. 46, No. 11DOI
Shim D., O K. K., Jun 2016, Self-biased Anti-parallel Diode Pair in 130-nm CMOS, IEE Electron. Lett., Vol. 52, No. 13, pp. 1147-1149Google Search
Shim D., Choi W., Lee J., O K. K., Oct 2017, Self-Dynamic, Static Biasing for Output Power, Efficiency Enhancement of Complementary Antiparallel Diode Pair Freqeuncy Tripler, IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 12, pp. 1110-1112Google Search
Sankaran S., Mao C., Seok E., Shim D., Cao C., Han R., Hung C., O K. K., Feb 2009, Towards THz Operation of CMOS, in IEEE ISSCC Dig. Tech. Papers, pp. 202-203DOI
14 Search
Sze S. M., 1969, Physics of Semiconductor Devices, Wiley Interscience & SonsGoogle Search
Joythi I., Yang H., Shim K., Janardhanam V., Kang S., Hong H., Choi C., Sep 2013, Temperature Dependency of Schottky Barrier Parameters of Ti Schottky Contacts to Si-on-Insulator, Material Transactions, Vol. 54, No. 9, pp. 1655-1660DOI
Muller R. S., Kamins T. I., 2002, Device Electronics for Integrated Circuits, Wiley 3$^{\mathrm{rd}}$ edGoogle Search
Ng W. T., Liang S., Salama C. A. T., Jan 1990, Schottky Barrier Diode Characteristics under High Level Injection, Solid-State Electronics, Vol. 33, No. 1, pp. 39-46DOI
Yang Y. N., Coon D. D., Shepard P. F., Oct 1984, Thermionic emission in silicon at temperatures below 30 K, Appl. Phys. Lett., Vol. 45, pp. 752-754DOI
Song Y. P., Van Meirhaeghe R. L., Laflere W. H., Cardon F., Jun 1986, On the difference in apparent barrier height as obtained from capacitance-voltage, current-voltage-temperature measurements on Al/p-InP Schottky barriers, Solid-State Electronics, Vol. 29, No. 6, pp. 633-638DOI
Werner J. H., Guttler H. H., Feb 1991, Barrier inhomogeneities at Schottky contacts, Appl. Phys. Lett., Vol. 69, pp. 1522-1533DOI
Gumus A., Turut A., Yalcin N., Jan 2002, Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs, Journal of Applied Physics, Vol. 91, No. 1, pp. 245-250DOI
Hudait M. K., Venkateswarlu P., Krupanidhi S. B., Jan 2001, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures, Solid-State Electronics, Vol. 45, No. 1, pp. 133-141DOI
Andrews J. M., Lepselter M. P., 1970, Reverse Current-Voltage Characteristics of Metal-Silicide Schottky Diodes, Solid State Electronics, Vol. 13, pp. 1011-1023DOI
Assen M., 2017, Review of Magnetoresistance, Hall Effect in Metals, Semiconductors, Master thesis Addis Ababa UniversityGoogle Search
Delmo M., Kasai S., Kobayashi K., Ono T., Sep 2009, Current-controlled magnetoresistance in silicon in non-Ohmic transport regimes, Applied Physics Letter, Vol. 95, No. 132106DOI
Delmo M. P., Yamamoto S., Kasai S., Ono T., Kobayashi K., Feb 2009, Large positive magnetoresistive effect in silicon induced by the space-charge effect, Nature, Vol. 457, pp. 1112-1115DOI
Borblik V. L., Rudnev I. A., Shawarts Y. M., Shwarts M. M., 2011, Negative magnetoresistance of heavily doped silicon p-n junction, Semiconductor Physics Quantum Electronics & Optoelectronics, Vol. 14, No. 1, pp. 88-90Google Search
Yang D. Z., Wang T., Sui W. B., Si M. S., Guo D. W., Shi Z., Wang F. C., Xue D. S., Sep 2015, Temperature-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions, Scientific Reports, Vol. 5, No. 11096DOI
Wang T., Si M., Yang E., Shi Z., Wang F., Yang Z., Zhou S., Xue D., Jan 2014, Angular dependence of the magnetoresistance effect in a silicon based p-n junction device, Nanoscale, Vol. 6, No. 3978DOI