Mobile QR Code QR CODE

REFERENCES

1 
Yoshioka S., Hayashi H., Kuwabara A., Oba F., Matsunaga K., Tanaka I., 346211 2007, Structures and energetics of Ga2O3 polymorphs, Journal of Physics: Condensed Matter 19Google Search
2 
Furthmüller J., Bechstedt F., 2016, Quasiparticle bands and spectra of Ga2O3 polymorphs, Physical Review B, Vol. 93, pp. 115204DOI
3 
Lovejoy T. C., Yitamben E. N., Shamir N., Morales J., Villora E. G., Shimamura K., Zheng S., Ohuchi F. S., Olmstead M. A., 2009, Surface morphology and electronic structure of bulk single crystal β − Ga2O3(100), Applied Physics Letters, Vol. 94, No. 081906DOI
4 
Mohamed M., Janowitz C., Unger I., Manzke R., Galazka Z., Uecker R., Fornari R., Weber J. R., Varley J. B., Van de Walle C. G., 2010, The electronic structure of β − Ga2O3, Applied Physics Letters, Vol. 97, No. 211903DOI
5 
Janowitz C., Scherer V., Mohamed M., Krapf A., Dwelk H., Manzke R., Galazka Z., Uecker R., Irmscher K., Fornari R., Michling M., SchmeiSSer D., Weber J. R., Varley J. B., de Walle C. G. V., 2011, Experimental electronic structure of In2O3 and Ga2O3, New Journal of Physics, Vol. 13, No. 085014Google Search
6 
Higashiwaki M., Sasaki K., Kuramata A., Masui T., Yamakoshi S., 2012, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single crystal β − Ga2O3(100) substrates, Applied Physics Letters, Vol. 100, No. 013504 DOI
7 
Guo Z., Verma A., Wu X., Sun F., Hickman A., Masui T., Kuramata A., Higashiwaki M., Jena D., Luo T., 2015, Anisotropic thermal conductivity in single crystal β-gallium oxide, Applied Physics Letters, Vol. 106, No. 111909DOI
8 
Kuramata A., Koshi K., Watanabe S., Yamaoka Y., Masui T., Yamakoshi S., 2016, High-quality β − Ga2O3 single crystals grown by edge-defined film fed growth, Japanese Journal of Applied Physics, Vol. 55, No. 1202a2Google Search
9 
Víllora E. G., Shimamura K., Yoshikawa Y., Aoki K., Ichinose N., 2004, Large-size β − Ga2O3 single crystals and wafers, Journal of Crystal Growth, Vol. 270, pp. 420-426DOI
10 
Galazka Z., Irmscher K., Uecker R., Bertram R., Pietsch M., Kwasniewski A., Naumann M., Schulz T., Schewski R., Klimm D., Bickermann M., 2014, On the bulk β − Ga2O3 single crystals grown by the Czochralski method, Journal of Crystal Growth, Vol. 404, pp. 184-191DOI
11 
Hoshikawa K., Ohba E., Kobayashi T., Yanagisawa J., Miyagawa C., Nakamura Y., 2016, Growth of β − Ga2O3 single crystals using vertical Bridgman method in ambient air, Journal of Crystal Growth, Vol. 447, pp. 36-41DOI
12 
Xue H., He Q., Jian G., Long S., Pang T., Liu and M., 2018, An overview of the ultrawide bandgap Ga2O3 semiconductor-based schottky barrier diode for power electronics application, Nanoscale Research Letters, Vol. 13, pp. 290DOI
13 
Huan Y.-W., Sun S.-M., Gu C.-J., Liu W.-J., Ding S.-J., Yu H.-Y., Xia C.-T., Zhang D. W., 2018, Recent advances in β−Ga2O3-metal contacts, Nanoscale Research Letters, Vol. 13, pp. 246DOI
14 
Stepanov S., Nikolaev V., Bougrov V., Romanov A., 2016, Gallium oxide: properties and applica a review, Reviews on Advanced Materials Science, Vol. 44, pp. 63-86Google Search
15 
Higashiwaki M., Kuramata A., Murakami H., Kumagai Y., 2017, State-of-the-art technologies of gallium oxide power devices, Journal of Physics D: Applied Physics, Vol. 50, No. 333002Google Search
16 
Pearton S., Yang J., Cary IV P. H., Ren F., Kim J., Tadjer M. J., Mastro M. A., 2018, A review of Ga2O3 materials, processing, and devices, Applied Physics Reviews, Vol. 5, No. 011301DOI
17 
Zhang Y., Joishi C., Xia Z., Brenner M., Lodha S., Rajan S., 2018, Demonstration of β − (AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors, Applied Physics Let- ters, Vol. 112, No. 233503DOI
18 
Chabak K. D., Moser N., Green A. J., Walker D. E., Tetlak S. E., Heller E., Crespo A., Fitch R., McCandless J. P., Leedy K., Baldini M., Wagner G., Galazka Z., Li X., Jessen G., 2016, Enhancement-mode Ga2O3 wrap gate fin field-effect transistors on native (100) β − Ga2O3 substrate with high breakdown voltage, Applied Physics Letters, Vol. 109, No. 213501DOI
19 
Zeng K., Sasaki K., Kuramata A., Masui T., Singisetti and U., 2016, Depletion and enhancement mode β − Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage, 2016 74th Annual Device Research Conference (DRC), pp. 1-2DOI
20 
Chabak K., Green A., Moser N., Tetlak S., McCandless J., Leedy K., Fitch R., Cre- spo A., Jessen G., 2017, Gate-recessed, laterally-scaled β − Ga2O3 MOSFETs with high-voltage enhancement-mode operation, 2017 75th Annual Device Research Conference (DRC), pp. 1-2DOI
21 
Chabak K. D., McCandless J. P., Moser N. A., Green A. J., Mahalingam K., Crespo A., Hen- dricks N., Howe B. M., Tetlak S. E., Leedy K., Fitch R. C., Wakimoto D., Sasaki K., Kuramata A., Jessen G. H., 2018, Recessed-gate enhancement-mode β − Ga2O3 MOSFETs, IEEE Electron Device Letters, Vol. 39, pp. 67-70DOI
22 
Wong M. H., Nakata Y., Kuramata A., Yamakoshi S., Higashiwaki and M., 2017, Enhancement mode Ga2O3 MOSFETs with Si-ion-implanted source and drain, Applied Physics Express, Vol. 10, No. 041101Google Search
23 
Sasaki K., Thieu Q. T., Wakimoto D., Koishikawa Y., Kuramata A., Yamakoshi S., 2017, Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy, Applied Physics Express, Vol. 10, No. 124201Google Search
24 
Hu Z., Nomoto K., Li W., Tanen N., Sasaki K., Kuramata A., Nakamura T., Jena D., Xing H. G., 2018, Enhancement-mode Ga2O3 vertical transistors with breakdown voltage > 1kV, IEEE Electron Device Letters, Vol. 39, pp. 869-872DOI
25 
Kamimura T., Krishnamurthy D., Kuramata A., Yamakoshi S., Higashiwaki M., 2016, Epitaxially grown crystalline Al2O3 interlayer on β - Ga2O3 (010) and its suppressed interface state density, Japanese Journal of Applied Physics, Vol. 55, No. 1202b5Google Search
26 
Hattori M., Oshima T., Wakabayashi R., Yoshimatsu K., Sasaki K., Masui T., Kuramata A., Yamakoshi S., Horiba K., Kumigashira H., 2016, Epitaxial growth and electric properties of γ − Al2O3 (110) films on β − Ga2O3 (010) substrates, Japanese Journal of Applied Physics, Vol. 55, No. 1202b6Google Search
27 
Kamimura T., Sasaki K., Hoi Wong M., Krishnamurthy D., Kuramata A., Masui T., Ya- makoshi S., Higashiwaki M., 2014, Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions, Applied Physics Letters, Vol. 104, No. 192104DOI
28 
Carey P. H., Ren F., Hays D. C., Gila B., Pearton S., Jang S., Kuramata A., 2017, Band alignment of Al2O3 with (201) β − Ga2O3, Vacuum, Vol. 142, pp. 52-57DOI
29 
Konishi K., Kamimura T., Wong M. H., Sasaki K., Kuramata A., Yamakoshi S., Hi- gashiwaki M., 2016, Large conduction band offset at SiO2/β − Ga2O3 heterojunction determined by X-ray photoelectron spectroscopy, physica status solidi (b), Vol. 253, pp. 623-625DOI
30 
Wang T., Li W., Ni C., Janotti A., 2018, Band gap and band offset of Ga2O3 and (AlxGa1−x)2O3 Alloys, Phys. Rev. Applied, Vol. 10, No. 011003DOI
31 
Peelaers H., Varley J. B., Speck J. S., Van de Walle C. G., 2018, Structural and electronic properties of Ga2O3 − Al2O3 alloys, Applied Physics Letters, Vol. 112, No. 242101DOI
32 
Park J., Hong S.-M., 2018, First principles investigation of Al2O3/β−Ga2O3 interface structures, in 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 314-317DOI
33 
Varley J. B., Weber J. R., Janotti A., Van de Walle C. G., 2010, Oxygen vacancies and donor impurities in β−Ga2O3, Applied Physics Letters, Vol. 97, No. 142106DOI
34 
Zacherle T., Schmidt P. C., Martin M., 2013, Ab initio calculations on the defect structure of β − Ga2O3, Phys. Rev. B, Vol. 87, No. 235206DOI
35 
Deák P., Duy Ho Q., Seemann F., Aradi B., Lorke M., Frauenheim T., 2017, Choosing the correct hybrid for defect calculations: A case study on intrinsic carrier trapping in β − Ga2O3, Phys. Rev. B, Vol. 95, No. 075208DOI
36 
Kyrtsos A., Matsubara M., Bellotti E., 2017, Migration mechanisms and diffusion barriers of vacancies in Ga2O3, Phys. Rev. B, Vol. 95, No. 245202DOI
37 
Ingebrigtsen M. E., Kuznetsov A. Y., Svensson B. G., Alfieri G., Mihaila A., Badstübner U., Perron A., Vines L., Varley J. B., 2019, Impact of proton irradiation on conductivity and deep level defects in β − Ga2O3, APL Materials, Vol. 7, No. 022510DOI
38 
Kyrtsos A., Matsubara M., Bellotti E., 2018, On the feasibility of p-type Ga2O3, Applied Physics Letters, Vol. 112, No. 032108DOI
39 
Neal A. T., Mou S., Rafique S., Zhao H., Ahmadi E., Speck J. S., Stevens K. T., Blevins J. D., Thomson D. B., Moser N., Chabak K. D., Jessen G. H., 2018, Donors and deep acceptors in β − Ga2O3, Applied Physics Letters, Vol. 113, No. 062101DOI
40 
Lyons J. L., 2018, A survey of acceptor dopants for β − Ga2O3, Semiconductor Science and Tech- nology, Vol. 33, No. 05lt02DOI
41 
Kresse G., Furthmüller J., 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, Vol. 6, pp. 15-50DOI
42 
Lany S., Zunger A., 2008, Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs, Phys. Rev. B, Vol. 78, No. 235104DOI
43 
Alkauskas A., Broqvist P., Pasquarello A., 2008, Defect energy levels in density functional calculations: alignment and band gap problem, Phys. Rev. Lett., Vol. 101, No. 046405DOI
44 
Koller D., Tran F., Blaha P., 2011, Merits and limits of the modified Becke-Johnson exchange potential, Physical Review B, Vol. 83, No. 195134DOI
45 
Freysoldt C., Grabowski B., Hickel T., Neugebauer J., Kresse G., Janotti A., Van de Walle C. G., 2014, First-principles calculations for point defects in solids, Reviews of modern physics, Vol. 86, pp. 253DOI
46 
Garza A. J., Scuseria G. E., 2016, Predicting band gaps with hybrid density functionals, The Journal of Physical Chemistry Letters, Vol. 7, pp. 4165-4170DOI
47 
Perdew J. P., Yang W., Burke K., Yang Z., Gross E. K. U., Scheffler M., Scuseria G. E., Henderson T. M., Zhang I. Y., Ruzsinszky A., Peng H., Sun J., Trushin E., Görling A., 2017, Understanding band gaps of solids in generalized Kohn-Sham theory, Proceedings of the National Academy of Sciences, Vol. 114, pp. 2801-2806DOI
48 
Lucero M. J., Henderson T. M., Scuseria G. E., 2012, Improved semiconductor lattice parameters and band gaps from a middle-range screened hybrid exchange functional, Journal of Physics: Condensed Matter, Vol. 24, No. 145504Google Search
49 
Chen W., Pasquarello A., 2012, Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory, Phys. Rev. B, Vol. 86, No. 035134DOI
50 
Waroquiers D., Lherbier A., Miglio A., Stankovski M., Poncé S., Oliveira M. J. T., Gi- antomassi M., Rignanese G.-M., Gonze X., 2013, Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory, Phys. Rev. B, Vol. 87, No. 075121DOI
51 
Crowley J. M., Tahir-Kheli J., Goddard W. A., 2016, Resolution of the band gap prediction problem for materials design, The Journal of Physical Chemistry Letters, Vol. 7, pp. 1198-1203DOI
52 
Koller D., Tran F., Blaha P., 2012, Improving the modified Becke-Johnson exchange potential, Physical Review B, Vol. 85, No. 155109DOI
53 
Dixit H., Saniz R., Cottenier S., Lamoen D., Partoens B., 2012, Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential, Journal of Physics: Condensed Matter, Vol. 24, No. 205503Google Search
54 
Wang Y., Yin H., Cao R., Zahid F., Zhu Y., Liu L., Wang J., Guo H., 2013, Electronic structure of III-V zinc-blende semiconductors from first principles, Phys. Rev. B, Vol. 87, No. 235203DOI
55 
Jiang H., 2013, Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation, The Journal of chemical physics, Vol. 138, No. 134115DOI
56 
Yazdanmehr M., Asadabadi S. J., Nourmohammadi A., Ghasemzadeh M., Rezvanian M., 2012, Electronic structure and bandgap of γ − Al2O3 compound using mBJ exchange potential, Nanoscale Research Letters, Vol. 7, pp. 488DOI
57 
Rehman G., Shafiq M., Ahmad R., Jalali-Asadabadi S., Maqbool M., Khan I., Rahnamaye- Aliabad H., Ahmad I., 2016, Electronic band structures of the highly desirable III-V semiconductors: TB-mBJ DFT studies, Journal of Electronic Materials, Vol. 45, pp. 3314-3323DOI
58 
Singh D. J., 2010, Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional, Phys. Rev. B, Vol. 82, No. 205102DOI
59 
Araujo R. B., de Almeida J. S., Ferreira da Silva A., 2013, Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential, Journal of Applied Physics, Vol. 114, No. 183702DOI
60 
Li W., Walther C. F. J., Kuc A., Heine T., 2013, Density functional theory and beyond for bandgap screening: performance for transition metal oxides and dichalcogenides, Journal of Chemical Theory and Computation, Vol. 9, pp. 2950-2958DOI
61 
Becke A. D., Roussel M. R., 1989, Exchange holes in inhomogeneous systems: A coordinate- space model, Physical Review A, Vol. 39, pp. 3761-3767DOI
62 
Lamparter P., Kniep R., 1997, Structure of amorphous Al2O3, Physica B: Condensed Matter, pp. 234-236DOI
63 
van Duin A. C. T., Dasgupta S., Lorant F., Goddard W. A., 2001, ReaxFF: A reactive force field for hydrocarbons, The Journal of Physical Chemistry A, Vol. 105, pp. 9396-9409DOI
64 
Plimpton S., 1995, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, Vol. 117, pp. 1-19DOI
65 
Narayanan B., van Duin A. C., Kappes B. B., Reimanis I. E., Ciobanu C. V., 2011, A reactive force field for lithium-aluminum silicates with applications to eucryptite phases, Modelling and Simulation in Materials Science and Engineering, Vol. 20, No. 015002DOI
66 
Perdew J. P., Burke K., Ernzerhof M., 1996, Generalized gradient approximation made simple, Physical Review Letters, Vol. 77, pp. 3865DOI
67 
Davis S., Gutiérrez G., 2011, Structural, elastic, vibrational and electronic properties of amorphous Al2O3 from ab initio calculations, Journal of Physics: Condensed Matter, Vol. 23, No. 495401Google Search
68 
Kresse G., Joubert D., 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, Vol. 59, pp. 1758-1775DOI
69 
Peelaers H., Van de Walle C. G., 2015, Brillouin zone and band structure of β − Ga2O3, physica status solidi (b), Vol. 252, pp. 828-832DOI
70 
Mock A., Korlacki R., Briley C., Darakchieva V., Monemar B., Kumagai Y., Goto K., Hi- gashiwaki M., Schubert M., 2017, Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β − Ga2O3, Phys. Rev. B, Vol. 96, No. 245205DOI
71 
Ratnaparkhe A., Lambrecht W. R. L., 2017, Quasiparticle self-consistent GW band structure of Ga2O3 and the anisotropy of the absorption onset, Applied Physics Letters, Vol. 109, No. 267401DOI
72 
Alkauskas A., Lyons J. L., Steiauf D., Van de Walle C. G., 2012, First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: The example of GaN and ZnO, Phys. Rev. Lett., Vol. 109, No. 267401DOI
73 
Shi L., Wang L.-W., 2012, Ab initio calculations of deep level carrier nonradiative recombination rates in bulk semiconductors, Physical review letters, Vol. 109, No. 245501DOI
74 
Alkauskas A., Yan Q., Van de Walle C. G., 2014, First-principles theory of nonradiative carrier capture via multiphonon emission, Physical Review B, Vol. 90, No. 075202DOI
75 
Shi L., Xu K., Wang L.-W., 2015, Comparative study of ab initio nonradiative recombination rate calculations under different formalisms, Physical Review B, Vol. 91, No. 205315DOI
76 
Lyons J. L., Varley J. B., Steiauf D., Janotti A., Van de Walle C. G., 2017, First-principles characterization of native defect related optical transitions in ZnO, Journal of Applied Physics, Vol. 122, No. 035704DOI
77 
Frodason Y. K., Johansen K. M., Bjørheim T. S., Svensson B. G., Alkauskas A., 2017, Zn vacancy as a polaronic hole trap in ZnO, Phys. Rev. B, Vol. 95, No. 094105DOI
78 
Lyons J. L., Van de Walle C. G., 2017, Computationally predicted energies and properties of defects in GaN, NPJ Computational Materials, Vol. 3, pp. 12DOI
79 
Freysoldt C., Neugebauer J., Van de Walle C. G., 2009, Fully ab initio finite-size corrections for charged defect supercell calculations, Physical review letters, Vol. 102, No. 016402DOI
80 
Komsa H.-P., Rantala T. T., Pasquarello A., 2012, Finite-size supercell correction schemes for charged defect calculations, Physical Review B, Vol. 86, No. 045112DOI
81 
Kumagai Y., Oba F., 2014, Electrostatics based finite size corrections for first-principles point defect calculations, Phys. Rev. B, Vol. 89, No. 195205DOI
82 
Irmscher K., Galazka Z., Pietsch M., Uecker R., Fornari R., 2011, Electrical properties of β − Ga2O3 single crystals grown by the Czochralski method, Journal of Applied Physics, Vol. 110, No. 063720DOI
83 
Zhang Z., Farzana E., Arehart A. R., Ringel = S. A., 2016, Deep level defects throughout the bandgap of (010) β − Ga2O3 detected by optically and thermally stimulated defect spectroscopy, Applied Physics Letters, Vol. 108, No. 052105DOI
84 
Ingebrigtsen M. E., Varley J. B., Kuznetsov A. Y., Svensson B. G., Alfieri G., Mihaila A., Bad- stübner U., Vines L., 2018, Iron and intrinsic deep level states in Ga2O3, Applied Physics Letters, Vol. 112, No. 042104DOI
85 
Su C. Y., Hoshii T., Muneta I., Wakabayashi H., Tsutsui K., Iwai H., Kakushima K., 2018, Interface state density of atomic layer deposited Al2O3 on β − Ga2O3, ECS Transactions, Vol. 85, pp. 27-30Google Search
86 
Dong H., Mu W., Hu Y., He Q., Fu B., Xue H., Qin Y., Jian G., Zhang Y., Long S., Jia Z., Lv H., Liu Q., Tao X., Liu M., 2018, C-V and J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100)β − Ga2O3, AIP Advances, Vol. 8, No. 065215DOI