Mobile QR Code QR CODE

REFERENCES

1 
Choi S., et al. , Nov 2016, A Low-Power Real-Time Hidden Markov Model Accelerator for Gesture User Interface on Wearable Devices, IEEE Asian Solid-State Circuits Conf., pp. 261-264DOI
2 
Badami K., et al. , Feb 2015, Context-Aware Hierarchical Information-Sensing in a 6μW 90nm CMOS Voice Activity Detector, IEEE Int. Solid-State Circuits Conf., pp. 430-431DOI
3 
Choi J., et al. , Jan 2014, A 3.4-μW Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered Object-of-Interest Imaging, IEEE J. Solid-State Circuit, Vol. 49, No. 1, pp. 289-300DOI
4 
Cho S., et al. , Nov 2017, A Self-Powered Always-On Vision-based Wake-up Detector for Wearable Gesture user Interfaces, IEEE Asian Solid-State Circuits Conf., pp. 245-248DOI
5 
Ay S. U., Dec 2011, A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis, IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 6, pp. 535-545DOI
6 
Köklü G., et al. , May 2013, Characterization of standard CMOS compatible photodiodes and pixels for Lab-on-Chip devices, IEEE Int. Symp. on Circuits and Systems, pp. 1075-1078DOI
7 
Counjot N., et al. , Oct 2015, A 65 nm 0.5 V DPS CMOS Image Sensor With 17 pJ/Frame.Pixel and 42 dB Dynamic Range for Ultra-Low-Power SoCs, IEEE J. Solid-State Circuit, Vol. 50, No. 10, pp. 2419-2430DOI
8 
Ho D., et al. , May 2012, CMOS 3-T Digital Pixel Sensor with In-Pixel Shared Comparator, IEEE Int. Symp. on Circuits and Systems, pp. 930-933DOI
9 
Calhoun B. H., Chandrakasan AP. P., Feb 2007, A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation, IEEE J. Solid-State Circuits, Vol. 42, No. 3, pp. 680-688DOI
10 
Chiu Y.-W., et al. , Sept 2014, 40 nm bit-interleaving 12T subthreshold SRAM with data-aware write-assist, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 61, No. 9, pp. 2578-2585DOI
11 
Viola P., Jones M., Dec 2001, Rapid Object Detection using a Boosted Cascade of Simple Features, IEEE Computer Vision and Pattern Recognition, Vol. 1, pp. 511-518Google Search
12 
Kim T.-K., et al. , 2009, Canonical correlation analysis of video volume tensors for action categorization and detection, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 31, No. 8, pp. 1451-1428DOI