Mobile QR Code QR CODE


Park S., Choi S., Lee J., Kim M., Park J., Yoo H.-J., 2016, A 126.1mW Real-Time Natural UI/UX Processor with Embedded Deep-Learning Core for Low-Power Smart Glasses, ISSCC Dig. Tech. Papers, pp. 254-256DOI
Günter S., Bunke H., Apr 2004, HMM-based handwritten word recognition: On the optimization of the number of states, training iterations and Gaussian components, Pattern Recognition, Vol. 37, No. 10, pp. 2069-2079DOI
Farra N., Raffa G., Nachman L., Hajj H., 2011, Energy-Efficient Mobile Gesture Recognition with Computation Offloading, Proc. Int. Conf. Energy Aware Comput., pp. 1-6DOI
Fahmy S. A., Cheung P. Y. K., Luk W., 2005, Hardware Acceleration of Hidden Markov Model Decoding for Person Detection, in Proc. Conf. Des., Autom. Test Eur. (DATE), Vol. 3, pp. 8-13DOI
Price M., Glass J., Chandrakasan A. P., Jan 2015, A 6 mW, 5,000-Word Real-Time Speech Recognizer Using WFST Models, IEEE J. Solid-State Circuits, Vol. 50, No. 1, pp. 102-112DOI
Choi S., et al. , Nov 2016, A Low-Power Real-Time Hidden Markov Model Accelerator for Gesture User Interface on Wearable Devices, in IEEE Asian Solid-State Circuits Conf., Vol. , No. , pp. 261-264DOI
Lee H.-K., Kim J. H., Oct 1999, An HMM-Based Threshold Model Approach for Gesture Recognition, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 21, No. 10, pp. 961-973Google Search
Lee S.-H., Kim J. H., Nov 1997, Augmenting the Discrimination Power of HMM by NN for On-Line Cursive Script Recognition, Applied Intelligence, Vol. 7, No. 4, pp. 304-314DOI
Hong I., Bong K., Shin D., Park S., Lee K. J., Kim Y., Yoo H.-J., Jan 2016, A 2.71 nJ/Pixel Gaze-Activated Object Recognition System for Low-Power Mobile Smart Glasses, IEEE J. Solid-State Circuits, Vol. 51, No. 1, pp. 45-55DOI
Nam B.-G., Yoo H.-J., May 2009, An embedded stream processor core based on logarithmic arithmetic for a low-power 3-D graphics SoC, IEEE J. Solid-State Circuits, Vol. 44, No. 5, pp. 1554-1570DOI