Mobile QR Code QR CODE

REFERENCES

1 
Park S., Choi S., Lee J., Kim M., Park J., Yoo H.-J., 2016, A 126.1mW Real-Time Natural UI/UX Processor with Embedded Deep-Learning Core for Low-Power Smart Glasses, ISSCC Dig. Tech. Papers, pp. 254-256DOI
2 
Günter S., Bunke H., Apr 2004, HMM-based handwritten word recognition: On the optimization of the number of states, training iterations and Gaussian components, Pattern Recognition, Vol. 37, No. 10, pp. 2069-2079DOI
3 
Farra N., Raffa G., Nachman L., Hajj H., 2011, Energy-Efficient Mobile Gesture Recognition with Computation Offloading, Proc. Int. Conf. Energy Aware Comput., pp. 1-6DOI
4 
Fahmy S. A., Cheung P. Y. K., Luk W., 2005, Hardware Acceleration of Hidden Markov Model Decoding for Person Detection, in Proc. Conf. Des., Autom. Test Eur. (DATE), Vol. 3, pp. 8-13DOI
5 
Price M., Glass J., Chandrakasan A. P., Jan 2015, A 6 mW, 5,000-Word Real-Time Speech Recognizer Using WFST Models, IEEE J. Solid-State Circuits, Vol. 50, No. 1, pp. 102-112DOI
6 
Choi S., et al. , Nov 2016, A Low-Power Real-Time Hidden Markov Model Accelerator for Gesture User Interface on Wearable Devices, in IEEE Asian Solid-State Circuits Conf., Vol. , No. , pp. 261-264DOI
7 
Lee H.-K., Kim J. H., Oct 1999, An HMM-Based Threshold Model Approach for Gesture Recognition, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 21, No. 10, pp. 961-973Google Search
8 
Lee S.-H., Kim J. H., Nov 1997, Augmenting the Discrimination Power of HMM by NN for On-Line Cursive Script Recognition, Applied Intelligence, Vol. 7, No. 4, pp. 304-314DOI
9 
Hong I., Bong K., Shin D., Park S., Lee K. J., Kim Y., Yoo H.-J., Jan 2016, A 2.71 nJ/Pixel Gaze-Activated Object Recognition System for Low-Power Mobile Smart Glasses, IEEE J. Solid-State Circuits, Vol. 51, No. 1, pp. 45-55DOI
10 
Nam B.-G., Yoo H.-J., May 2009, An embedded stream processor core based on logarithmic arithmetic for a low-power 3-D graphics SoC, IEEE J. Solid-State Circuits, Vol. 44, No. 5, pp. 1554-1570DOI