Mobile QR Code QR CODE

REFERENCES

1 
Krizhevsky A., et al , 2012, ImageNet classificatino with deep convolutional neural networks, in Advances in Nueral Information Processing Systems (NIPS), Vol. 25Google Search
2 
Szegedy C., et al , Jun. 2015, Going deeper with convolutions, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1-9Google Search
3 
He K., Zhang X., Ren S., Sun J., Jun. 2016, Deep residual learning for image recognition, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 770-778Google Search
4 
Xie S., et al , Jul. 2017, Aggregated residual transformations for deep neural networks, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 5987-5995Google Search
5 
Redmon J., et al , Jun. 2016, You only look once: unified, real-time object detection, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 779-788Google Search
6 
Ou Y., Oyang Y., Aug. 2005, A novel radial basis function network classifier with centers set by hierarchical clustering, in International Joint Conference on Neural Networks, pp. 1383-1388DOI
7 
Sardar S., et al , Nov. 2011, A hardware/software co-design model for face recognition using cognimem neural network chip, in IEEE International Conference on Image Information Processing, pp. 1-6DOI
8 
Park J., et al , 2013, A 646GOPS/W multi-classifier many-core processor with cortex-like architecture for super-resolution recognition, IEEE International Solid-State Circuits Conference Digest of Tech. Papers, pp. 168-169DOI
9 
Kim G., et al , Jan. 2015, A 1.22 tops and 1.52mW/MHz augmented reality multi core processor with neural network NoC for HDM applications, IEEE Journal of Solid-State Circuits, Vol. 50, No. 1, pp. 113-124DOI
10 
Hong I., et al , Jan. 2016, A 2.71nJ/pixel gaze-activated object recognition system for low-power mobile smart glasses, IEEE Journal of Solid-State Circuits, Vol. 51, No. 1, pp. 45-55DOI
11 
Seo J., et al , Oct. 2011, A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons, in Proceedings of IEEE Custom Integrated Circuits ConferenceDOI
12 
Ienne P., et al , Aug. 1996, Special-purpose digital hardware for neural networks: an architectural survey, Journal of VLSI Signal Processing Systems, Vol. 13, No. 1, pp. 5-25DOI
13 
Yang F., Paindavoine M., Sept. 2003, Implementation of an RBF neural netwrok on embedded systems: realtime face tracknig an didentity verification, IEEE Transactions on Neural Networks, Vol. 14, No. 5, pp. 1162-1175DOI
14 
Du K. L., Swamy M. N. S., 2006, Neural Networks in a Softcomputing Framework, London, Springer, Vol. 6, No. 14, pp. 285Google Search
15 
Kang K., Shibata T., Jul. 2010, An on-chip-trainable gaussian-kernel analog support vector machine, IEEE Transactions on Circuits and Systems I, Vol. 57, No. 7, pp. 1513-1524DOI
16 
Lont J., Guggenbuhl W., May 1992, Analog CMOS implementation of a multilayer perceptron with nonlinear synapses, IEEE Transactions on Neural Networks, Vol. 3, No. 3, pp. 457-465DOI
17 
Peng S., Hasler P., Anderson D., Oct. 2007, An analog programmable multi dimensional radial basis function based classifier, IEEE Transactions on Circuits and Systems, Vol. 54, No. 10, pp. 2148-2158DOI
18 
Kim M., et al , 2009, A 54GOPS 51.8mW analog-digital mixed mode neural perception engine for fast object detection, in IEEE Custom Integrated Circuits Conference, pp. 649-652DOI
19 
Oh J., Lee S., Yoo H. J., May 2013, 1.2mW online learning mixed-mode intelligent inference engine for low-power real-time object recognition processor, IEEE Transactions on VLSI Systems, Vol. 21, No. 5, pp. 921-933DOI
20 
Lee K., et al , May 2013, A multi-modal and tunable radialbasis-function circuit with supply and temperature compensation, in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1608-1611DOI
21 
Yoo C., Park J., Dec. 2007, CMOS current reference with supply and temperature compensation, IEEE Electronics Letters, Vol. 43, No. 25, pp. 1422-1424DOI