Mobile QR Code QR CODE

REFERENCES

1 
Chrungoo A., Manimaran S. S., Ravindran B., 2014, Activity Recognition for Natural Human Robot Interaction, ICSR 2014. Lecture Notes in Computer Science, Springer, Vol. 8755DOI
2 
Rezazadegan Fahimeh, Shirazi Sareh, Upcrofit Ben, Milford Michael, 2017, Action recognition: From static datasets to moving robots, In Proceedings of IEEE International Conference on Robotics and Automation, pp. 3185-3191DOI
3 
Ji S., Xu W., Yang M., Yu K., 2013, 3D convolutional neural networks for human action recognition, IEEE PAMI, Vol. 35, No. 1, pp. 221-231DOI
4 
Karpathy A., Toderici G., Shetty S., Leung T., Sukthankar R., Fei-Fei L., 2014, Large-scale video classification with convolutional neural networks, In Proc. CVPRGoogle Search
5 
Sevilla-Lara L., Liao Y., Guney F., Jampani V., Geiger A., Black M. J., 2017, On the integration of optical flow and action recognition, arXiv preprint arXiv:1712.08416DOI
6 
Donahue Jeff, Hendricks Lisa Anne, Rohrbach Marcus, Venugopalan Subhashini, Guadarrama Sergio, Saenko Kate, Darrell Trevor, 2015, Long-Term Recurrent Convolutional Networks for Visual Recognition and Description, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Google Search
7 
Brox T., Bruhn A., Papenberg N., Weickert J., 2004, High accuracy optical flow estimation based on a theory for warping, In ECCVDOI
8 
Liu C., 2009, Beyond Pixels: Exploring New Representations and Applications for Motion Analysis, PhD thesis, MITGoogle Search
9 
Lee J., Kim C., Choi S., Shin D., Kang S., Yoo H., 2018, A 46.1 fps Global Matching Optical Flow Estimation Processor for Action Recognition in Mobile Devices, 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, pp. 1-5DOI
10 
Baker S., Scharstein D., Lewis J., Roth S., Black M. J., Szeliski R., 2011, A database and evaluation methodology for optical flow, International Journal of Computer Vision, Vol. 92, No. 1, pp. 1-31DOI
11 
Soomro K., Zamir A. R., Shah M., 2012, UCF101: A dataset of 101 human actions classes from videos in the wild, CRCV-TR-12-01, Tech. Rep.Google Search
12 
Seong H., Rhee C., Lee H., 2015, A novel hardware architecture of the lucas-kanade optical flow for reduced frame memory access, Circuits and Systems for Video Technology, IEEE Transactions on, Vol. PP, No. 99, pp. 1-1DOI
13 
Komorkiewicz M., Kryjak T., Gorgoń M., 2014, Efficient hardware implementation of the Horn–Schunck algorithm for high-resolution real-time dense optical flow sensor, Sensors, 1424-8220, Vol. 14, No. 2, pp. 2860-2891DOI