Mobile QR Code QR CODE


Indiveri G., et al , May 2011, 제목, Front. Neurosci, Vol. 5, pp. 73DOI
Poon C. S., Zhou K., Sep. 2011, Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities, Front. Neurosci, Vol. 5, pp. 108DOI
Kang D. H., et al , May 2015, Emulation of spike-timing dependent plasticity in nano-scale phase change memory, Neurocomputing, Vol. 155, pp. 153-158DOI
Suri M., et al , Dec. 2011, Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, Proc. IEEE IEDM, pp. 4.4.1-4.4.4DOI
Suri M., et al , Sep. 2012, Physical aspects of low power synapses based on phase change memory devices, J. Appl. Phys., Vol. 112, No. 5DOI
Burr G. W., et al , Nov. 2015, Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element, IEEE Trans. Electron Devices, Vol. 62, No. 11, pp. 3498-3507DOI
Kuzum D., et al , Jun. 2011, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing, Nano Lett., Vol. 12, No. 5, pp. 2179-2186DOI
Ambrogio S., et al , Mar. 2016, Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses, Front. Neurosci., Vol. 10, pp. 56-67DOI
Wong H. S., et al , Dec. 2010, Phase change memory, Proc. IEEE, Vol. 98, No. 12, pp. 2201-2227DOI
Im D. H., et al , Dec. 2008, A unified 7.5 nm dash-type confined cell for high performance PRAM device, Proc. IEEE IEDM, pp. 1-4DOI
Schmithusen B., Tikhomirov P., Lyumkis E., Sep. 2008, Phase-change memory simulations using an analytical phase space model, Proc. Int. Conf. Simul. Semicond. Process. Devices (SISPAD), pp. 57-60DOI
Avrami M., Dec. 1939, Kinetics of phase change. I. General theory, J. Chem. Phys., Vol. 7, No. 12, pp. 1103-1112DOI
Peng C., Cheng L., Mansuripur M., Sep. 1997, Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media, J. Appl. Phys., Vol. 82, No. 9, pp. 4183-4191DOI
Senkadar S., Wright C. D., Feb. 2004, Models for phasechange of Ge2Sb2Te5 in optical and electrical memory devices, J. Appl. Phys., Vol. 95, No. 2, pp. 504-511DOI
Servalli G., Dec. 2009, A 45nm generation phase change memory technology, Proc. IEEE IEDM, pp. 1-4DOI
Boniardi M., et al , Dec. 2014, Optimization metrics for phase change memory (PCM) cell architectures, Proc. IEEE IEDM, pp. 29.1.1-29.1.4DOI
Reifenberg J. P., et al , Oct. 2008, The impact of thermal boundary resistance in phase-change memory devices, IEEE Electron Device Lett., Vol. 29, No. 10, pp. 1112-1114DOI
Kencke D. L., et al , Dec. 2007, The role of interfaces in damascene phase-change memory, Proc. IEEE IEDM, pp. 323-326DOI
Kim E. K., et al , Jun. 2000, Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface, Appl. Phys. Lett., Vol. 76, No. 26, pp. 3864-3866DOI
Pirovano A., et al , Mar. 2004, Electronic switching in phasechange memories, IEEE Trans. Electron Devices, Vol. 51, No. 3DOI
Ferrari G., et al , Sep. 2010, Multiphysics modeling of PCM devices for scaling investigation, Proc. Int. Conf. SISPAD, pp. 265-268DOI
Konstantinov P. P., et al , Jul. 2001, Thermoelectric properties of nGeTe center dot mSb2Te3 layered compounds, Inorganic Mater., Vol. 37, No. 7, pp. 662-668Google Search
Kim D. H., et al , Mar. 2007, Three-dimensional simulation model of switching dynamics in phase change random access memory cells, J. Appl. Phys., Vol. 101, No. 6DOI
Khulbe P. K., et al , Oct. 2000, Crystallization behavior of asdeposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films, J. Appl. Phys., Vol. 88, No. 7, pp. 3926-3933DOI
Raoux S., et al , Nov. 2007, Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials, J. Appl. Phys., Vol. 102, No. 9, pp. 094305DOI
Horii H., et al , Jun. 2003, A novel cell technology using Ndoped GeSbTe films for phase change RAM, Proc. Symp. VLSI Tech. Dig., pp. 177-178DOI
Qiao B., et al , Oct. 2006, Effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory, Appl. Surf. Sci., Vol. 252, No. 24, pp. 8404-8409DOI
Zhou X., et al , Oct. 2012, Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application, Appl. Phys. Lett., Vol. 101, No. 14, pp. 142104DOI
Akola J., Jones R. O., Dec. 2017, Speeding up crystallization, Science, Vol. 358, No. 6369, pp. 1386-1386DOI
Rao F., et al , 2017, Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing, Science, Vol. 358, pp. 1423-1427DOI