Mobile QR Code QR CODE

References

1 
Ekimov, A., Hache, F., Schanne-Klein, M., Ricard, D., Flytzanis, C., Kudryavtsev, I., Yazeva, T., Rodina, A. and Efros, A., "Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions," J. Opt. Soc. Am. B, Vol. 10, No. 1, pp. 100-107, Jan., 1993.DOI
2 
Efors, A. and Brus, L., “Nanocrystal quantum dots: from discovery to modern development,” ACS Nano, Vol. 15, No. 4, pp. 6192-6210, Apr., 2021.DOI
3 
Shen, H., Gao, Q., Zhang, Y., Lin, Y., Lin, Q., Li, Z., Chen, L., Zeng, Z., Li, X., Jia, Y., Wang, S., Du, Z., Li, L. and Zhang, Z., “Visible Quantum dot light-emitting diodes with simultaneous high brightness and efficiency,” Nat. Photon., Vol. 13, pp. 192-197, Feb., 2019.DOI
4 
Deng, Y., Peng, F., Lu, Y., Zhu, X., Jin, W., Qiu, J., Dong, J., Hao, Y., Di, D., Gao, Y., Sun, T., Zhang, M., Liu, F., Wang, L., Ying, L., Huang, F. and Jin Y., “Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage,” Nat. Photonics, Vol. 16, pp. 505-511, May, 2022.DOI
5 
Song, J., Wang, O., Shen, H., Lin, Q., Li, Z., Wang, L., Zhang, X. and Li, S., “Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer,” Adv. Funct. Mater., Vol. 29, No. 33, pp. 1808377, Aug., 2019.DOI
6 
Mashford, B., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Bulovic, V., Bawendi, M., Coe-Sullivan, S. and Kazlas, P., “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon., Vol. 7, pp. 407-412, Apr., 2013.DOI
7 
Moon, H., Lee, C., Lee, W., Kim, J. and Chae, H., “Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications,” Adv. Mater., Nov. 31, No. 34, pp. 1804294, Aug., 2019.DOI
8 
Li, X., Zhao, Y., Fan, F., Levina, L., Liu, M., Rafael, Q., Gong, X., Quan, L., Fan, J., Yang, Z., Hoogland, S., Voznyy, O., Lu, Z. and Edward, H., “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Comm. Nov. 12, pp. 159-164, Feb., 2018.DOI
9 
Qian, L., Zheng, Y., Xue, J. and Holloway, P., “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photon., Nov. 5, pp. 543-548, Aug., 2011.DOI
10 
Qiang, S. and Shuming, C., “Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes,” Nat. Commun., Vol. 13, No. 369, Jan., 2022.DOI
11 
Yang, Y., Zheng, Y., Cao, W., Titov, A., Hyvonen, J., Manders, J., Xue, J., Holloway, P. and Qian, L., “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photon. Vol. 9, pp. 259-266, Mar., 2015.DOI
12 
Geffroy, B., Roy, P. and Prat, C., “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int., Vol. 55, No. 6, pp. 572-582, Jun., 2006.DOI
13 
Thomschke, M., Reineke, S., Lüssem, B. and Leo, K., “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. Vol. 12, No. 1, pp. 424-428, Dec., 2012.DOI
14 
Lee, T., Hahm, D., Kim, K., Bae, w., Lee, C. and Kawk, J., “Highly efficient and bright inverted top-emitting inp quantum dot light-emitting diodes introducing a hole-suppressing interlayer, small,” Vol. 15, No. 50, pp. 1905162, Dec., 2019.DOI
15 
Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J. and Peng, X., “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature, Vol. 515, pp. 96-99, Oct., 2014.DOI
16 
Lee, K., Han, C., Kang, H., Ko, H., Lee, C., Lee, J., Myoung, N., Yim, S. and Yang, H., “Highly efficient, color-reproducible full-color electro-luminescent devices based on red/green/blue quantum dot-mixed multilayer, ACS Nano, Vol. 9, No. 11, pp. 10941-10949, Oct., 2015.DOI
17 
Lee, K., Lee, J., Kang, H., Park, B., Kwon, Y., Ko, H., Lee, C., Lee, J. and Yang, H., “Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots,” ACS Nano, Vol. 8, No. 5, pp. 4893-4901, Apr., 2014.DOI
18 
Kirkwood, N., Singh, B. and Mulvaney, P., “Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer,” Adv. Mater. Interfaces, Vol. 3, No. 22, pp. 1600868, Nov., 2016.DOI
19 
Liu, Y., Jiang, C. Song, C., Wang, J., Mu, L., He, Z. Zhong, Z., Cun, Y., Mai, C., Wang, J., Peng, J. and Cao, Y., “Highly efficient all-solution processed inverted quantum dots based light emitting diodes,” ACS Nano, Vol. 12, No. 2, pp. 1564-1570, Jan., 2018.DOI
20 
Zhang, H. and Chen, S., “An ZnMgO:PVP inorganic-organic hybrid electron transport layer: towards efficient bottom-emission and transport quantum dot light-emitting diodes,” J. Mater. Chem. C, Vol. 7, No. 8, pp. 2291-2298, 2019.DOI
21 
Sun, Y., Jiang, Y., Peng, Y., Wei, J., Zhang, S. and Chen, S., “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.95O interfacial modification layer,” Nanoscale, Vol. 9, No. 26, pp. 8962-8969, May, 2017.DOI
22 
Liu, S., Ho, S., Chen, Y. and So, F., “Passivation of metal oxide surfaces for high-performance organic and hybrid optoelectronic devices,” Chem. Mater. Vol. 27, No. 7, pp. 2532-2539, Mar., 2015.DOI
23 
Lee, T., Kim, B., Lee, H., Hahm, D., Bae, W., Lim, J. and Kwak, J., “Bright and stable quantum dot light-emitting diodes,” Adv. Mater., Vol. 34, No. 4, pp. 2106276, Jan., 2022.DOI
24 
Janotti, A., and Van de Walle, C., “Native point defects in ZnO,” Phys. Rev. B: Condens. Matter Mater. Phys., Vol. 76, No. 16, pp. 165202, Ocr., 2007.DOI
25 
Lukas, S. and Judith, L., “ZnO-Nanostructure, defects, and devices,” Mater. Today, Vol. 10, No. 5, pp. 40-48, May, 2007.DOI
26 
Zhong, Z., Zou, J., Jiang, C., Lan, L., Song, C., He, Z., Mu, L., Wang, L., Wang, J., Peng, J. and Cao, Y., “Improved color purity and efficiency of blue quantum dot light-emitting diodes,” Org. Electron. , Vol. 58, pp. 245-249, July, 2018.DOI
27 
Cao, F., Wu, Q., Yizhen, S., Wang, S., Dou, Y., Hua, W., Kong, L., Wang, L., Zhang, J., Jiang, T. and Yang, X., “All-inorganic quantum dot light-emitting diodes with suppressed luminance quenching enabled by chloride passivated tungsten phosphate hole transport layers,” NANO MICRO Small, Vol. 17, No. 19, pp. 2100030, May, 2021.DOI
28 
Heo, S., Shin, J., Kim, T., Park, S., Jung, W., Kim, H., Hong, J., Kim, B., Park, Y., Chin, B., Kim, J. and Kang, S., “Highly efficient and low turn-on voltage quantum-dot ligh-emitting diodes using a ZnMgO/ZnO double electron transport layer,” Curr. Appl. Phys., Vol. 29, pp. 107-113, Sept., 2021.DOI
29 
Wang, L., Lin, J., Liu, X., Cao, S., Wang, Y., Zhao, J. and Zou, B., “Mg-doped ZnO nanoparticle film as the interlayer between the ZnO electron transport layer and quantum dot layer for light-emitting diodes,” J. Phys. Chem., Vol. 124, No. 16, pp. 8758-8765, Mar., 2020.DOI
30 
Zhang, Z., Ye, Y., Pu, C., Deng, Y., Dai, X., Chen, X., Chen, D., Zheng, X., Gao, Y., Fang, W., Peng, X. and Jin, Y., “High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots,” Adv. Mater. Vol. 30, No. 28, pp. 1801387, May, 2018.DOI
31 
Wang S., Guo, Y., Feng, D., Chen, L., Fang, Y., Shen, H., and Du, Z., “Bandgap tunable Zn1-xMgxO thin films as electron transport layers for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C, Vol. 5, No. 19, pp. 4724-4730, Mar., 2017.DOI
32 
Ning, M., Zhao, K., Zhao, L., Cao, S., Zhao, J., Gao, Y. and Yuan, X., “Passivating defects in ZnO electron transport layer for enhancing performance of red InP-Based quantum dot light-emitting diodes,” Mater. Res. Bull., Vol. 170, pp. 112589, Feb., 2024.DOI
33 
Eun, Y., Jang, G., Yang, J., Kim, S., Chae, Y., Ha, M., Moon, D. and Kim, C., “Performance improvement of quantum dot light-emitting diodes using a ZnMgO electron transport layer with a core/shell structure,” Materials Research Bulletin, Vol. 16, No. 2, pp. 600, Feb., 2023.DOI
34 
Hsieh, P., Chen, Y., Kao, K. and Wang, C., “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys. A, Vol. 90, pp. 317-321, Sept., 2007.DOI
35 
Han, X., He, H., Kuang, Q., Zhou, X., Zhang, X., Xu, T., Xie, Z. and Zheng, L., “Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites,” J. Phys. Chem., Vol. 113, No. 2, pp. 584-589, Dec., 2009.DOI
36 
Rim, Y., Kim, D., Jeong, W. and Kim, H., “Effect of Zr addition on ZnSnO thin-film transistors using a solution process,” Appl. Phys. Lett., Vol. 97, No. 23, pp. 233502, Dec., 2010.DOI
37 
Empedocles, S. and Bawendi, M., “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science, Vol. 278, No. 5346, pp. 2114-2117, Dec., 1997.DOI