Mobile QR Code QR CODE


C.-T. Sah, “Characteristics of the metal-oxide-semiconductor transistors,” IEEE Trans. Electron Devices, Vol. 11, No. 7, pp. 324-345, 1964.DOI
Q. Zhang, W. Zhao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett., Vol. 27, No. 4, pp. 297-300, 2006.DOI
J. H. Kim, S. Kim, and B.-G. Park, “Double-gate TFET with vertical channel sandwiched by lightly doped Si,” IEEE Trans. Electron Devices, Vol. 66, No. 4, pp. 1656-1661, 2019.DOI
A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” Proc. IEEE, Vol. 98, No. 12, pp. 2095-2110, 2010.DOI
R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Si-Nanowire $ n $-Type Tunneling FETs With Low Subthreshold Swing (≤ 50 [mV/decade] at Room Temperature,” IEEE Electron Device Lett., Vol. 32, No. 4, pp. 437-439, 2011.DOI
W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745, 2007.DOI
N. Damrongplasit, C. Shin, S. H. Kim, R. A. Vega, and T.-J. K. Liu, “Study of random dopant fluctuation effects in germanium-source tunnel FETs,” IEEE Trans. Electron Devices, Vol. 58, No. 10, pp. 3541-3548, 2011.DOI
A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,” IEEE Trans. Electron Devices, Vol. 50, No. 5, pp. 1254-1260, 2003.DOI
J. H. Kim, H. W. Kim, Y. S. Song, S. Kim, and G. Kim, “Analysis of current variation with work function variation in l-shaped tunnel-field effect transistor,” Micromachines, Vol. 11, No. 8, p. 780, 2020.DOI
K. M. Choi, S. K. Kim, and W. Y. Choi, “Influence of number fluctuation and position variation of channel dopants and gate metal grains on tunneling field-effect transistors (TFETs),” J. Nanosci. Nanotechnol., Vol. 16, No. 5, pp. 5255-5258, 2016.DOI
Y.-C. Yeo, T.-J. King, and C. Hu, “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor tech-nology,” J. Appl. Phys., Vol. 92, No. 12, pp. 7266-7271, 2002.DOI
H. Nam and C. Shin, “Study of high-k/metal-gate work-function variation using Rayleigh distribution,” IEEE Electron Device Lett., Vol. 34, No. 4, pp. 532-534, 2013.DOI
G. Kim, J. H. Kim, J. Kim, and S. Kim, “Analysis of work-function variation effects in a tunnel field-effect transistor depending on the device structure,” Appl. Sci., Vol. 10, No. 15, p. 5378, 2020.DOI
C. C. Hobbs et al., “Fermi-level pinning at the polysilicon/metal-oxide interface-Part II,” IEEE Trans. Electron Devices, Vol. 51, No. 6, pp. 978-984, 2004.DOI
A. Ravindran, A. George, C. S. Praveen, and N. Kuruvilla, “Gate all around nanowire TFET with high ON/OFF current ratio,” Mater. Today Proc., Vol. 4, No. 9, pp. 10637-10642, 2017.DOI
Y. Lee, H. Nam, J.-D. Park, and C. Shin, “Study of work-function variation for high- κ metal-gate Ge-Source tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 62, no. 7, pp. 2143-2147, 2015.DOI
H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part II: Implications for process, device, and circuit design,” IEEE Trans. Electron Devices, Vol. 57, No. 10, pp. 2515-2525, 2010.DOI
T. M. Mitchell and T. M. Mitchell, Machine learning, vol. 1, no. 9. McGraw-hill New York, 1997.URL
J. Lim and C. Shin, “Machine learning (ML)-based model to characterize the line edge roughness (LER)-induced random variation in FinFET,” IEEE Access, Vol. 8, pp. 158237-158242, 2020.DOI
Y. S. Bankapalli and H. Y. Wong, “TCAD augmented machine learning for semiconductor device failure troubleshooting and reverse engineering,” in 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2019, pp. 1-4.DOI
Y.-C. Wu and Y.-R. Jhan, “Introduction of synopsys sentaurus TCAD simulation,” in 3D TCAD Simulation for CMOS Nanoeletronic Devices, Springer, 2018, pp. 1-17.DOI
E. P. Gyftopoulos and J. D. Levine, “Work function variation of metals coated by metallic films,” J. Appl. Phys., Vol. 33, No. 1, pp. 67-73, 1962.DOI
G.-B. Huang, “Learning capability and storage capacity of two-hidden-layer feedforward networks,” IEEE Trans. neural networks, Vol. 14, No. 2, pp. 274-281, 2003.DOI
Z. Zhang, “Improved adam optimizer for deep neural networks,” in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 2018, pp. 1-2.DOI
A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv Prepr. arXiv1803.08375, 2018.DOI
H. W. Kim and J. H. Kim, “Study on the Influence of Drain Voltage on Work Function Variation Characteristics in Tunnel Field-effect Transistor,” J. Semicond. Technol. Sci., Vol. 20, No. 6, pp. 558-564, 2020.DOI
L. De Michielis, L. Lattanzio, and A. M. Ionescu, “Understanding the superlinear onset of tunnel-FET output characteristic,” IEEE Electron Device Lett., Vol. 33, No. 11, pp. 1523-1525, 2012.DOI
K. Bernstein, R. K. Cavin, W. Porod, A. Seabaugh, and J. Welser, “Device and architecture outlook for beyond CMOS switches,” Proc. IEEE, Vol. 98, No. 12, pp. 2169-2184, 2010.DOI