Mobile QR Code QR CODE

References

1 
N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu, and Y. Kitayama, “Reduction of Particle Contamination in Plasma-Etching Equipment by Dehydration of Chamber Wall,” Jpn. J. Appl. Phys. Vol. 47, No. 5, pp. 3630-3634, May. 2008.DOI
2 
F. Uesugi, N. Ito, T. Moriya, H. Doi, S. Sakamoto, and Y. Hayashi, “Real-time monitoring of scattered laser light by a single particle of several ten of nanometers in the etching chamber in relation to its status with the equipment,” J. Vac. Sci. Technol. A Vol. 16, No. 3, pp. 1189-1195, Oct. 1998DOI
3 
T. Moriya, N. Ito, and F. Uesugi, “Capture of flaked particles during plasma etching by a negatively biased electrode,” J. Vac. Sci. Technol. B Vol. 22, No. 5, pp. 2359-2363, Jul. 2004.DOI
4 
H.-S. Jun, “Diffusive Plasma Dechucking Method for Wafers to Reduce Falling Dust Particles,” Jpn. J. Appl. Phys. Vol. 52, No. 6R, pp. 066203-1-066203-5, Jun. 2013.DOI
5 
G. Lapenta and J. U. Brackbill, “Simulation of dust particle dynamics for electrode design in plasma discharges,” Plasma Sources Sci. Technol. Vol. 6, No. 1, pp. 61-69, Feb. 1997.DOI
6 
S. J. Choi, P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, “Spatial distributions of dust particles in plasmas generated by capacitively coupled radiofrequency discharges,” Plasma Sources Sci. Technol. Vol. 3, No. 3, pp. 418-425, Aug. 1994.DOI
7 
M. A. Hussein and R. B. Turkot, Jr., “Particle control in dielectric etch chamber,” IEEE Trans. Semicond. Manuf. Vol. 19, No. 1, pp. 146-155, Feb. 2006.DOI
8 
Y. Kasashima, T. Motomura, N. Nabeoka, and F. Uesugi, “Numerous flaked particles instan-taneously generated by micro-arc discharge in mass-production plasma etching equipment,” Jpn. J. Appl. Phys. Vol. 54, No. 1S, pp. 01AE02-1-01AE02-6, Jan. 2015.DOI
9 
Y. Kasashima, N. Nabeoka, T. Motomura, and F. Uesugi, “Many flaked particles caused by impulsive force of electric field stress and effect of electrostriction stress in mass-production plasma etching equipment,” Jpn. J. Appl. Phys. Vol. 53, No. 4, pp. 040301-1-040301-3, Apr. 2014.DOI
10 
Y. Kasashima, N. Nabeoka, and F. Uesugi, “Instantaneous Generation of Many Flaked Particles by Impulsive Force of Electric Field Stress Acting on Inner Wall of Mass-Production Plasma Etching Equipment,” Jpn. J. Appl. Phys. Vol. 52, No. 6R, pp. 066201-1-066201-6, Jun. 2013.DOI
11 
Y. Kasashima, T. Ikeda, and T. Tabaru, “Decrease in Particles by Substituting Conductive Magnesium-Oxide Based Ceramics for Conven-tional Electrode Materials Used in Process Chamber of Plasma Etching,” IEEE Trans. Semicond. Manuf. Vol. 34, No. 2, pp. 224-226, May. 2021.DOI
12 
Y. Kasashima, K. Tsutsumi, S. Mitomi, and F. Uesugi, “Development and evaluation of magnesium oxide-based ceramics for chamber parts in massproduction plasma etching equipment,” Jpn. J. Appl. Phys. Vol. 56, No. 6S2, pp. 06HC01-1-06HC01-5, Jun. 2017.DOI
13 
Y. Kasashima, T. Motomura, H. Kurita, N. Kimura, and F. Uesugi, “Detection of microarc discharge using a highspeed load impedance monitoring system,” Appl. Phys. Express. Vol. 7, No. 9, pp. 096102-1-096102-4, Sep. 2014.DOI
14 
T. Motomura, Y. Kasashima, O. Fukuda, F. Uesugi, H. Kurita, and N. Kimura, “Practical monitoring system using characteristic impedance measure-ment during plasma processing,” Rev. Sci. Instrum. Vol. 85, No. 2, pp. 026103-1-026103-3, Feb. 2014.DOI
15 
M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, New York, USA: Wiley, 2005.URL
16 
Y. Kasashima, H. Kurita, N. Kimura, A. Ando, and F. Uesugi, “Monitoring of inner wall condition in mass-production plasma etching process using a load impedance monitoring system,” Jpn. J. Appl. Phys. Vol. 54, no. 6, pp. 060301-1-060301-4, Jun. 2015.DOI