Mobile QR Code QR CODE


Asanovic K., Bodik R., Demmel J., Keaveny T., Keutzer K., Kubiatowicz J., Morgan N., Patterson D., Sen K., Wawrzynek J., Wessel D., Yelick K., Oct 2009, A view of the parallel computing landscape, Commun. ACM, Vol. 52, No. 10, pp. 56-67DOI
Kindratenko V., Trancoso P., May-Jun 2011, Trends in High-Performance Computing, Comput. Sci. Eng., Vol. 13, No. 3, pp. 92-95DOI
Birman K. P., Dec 1993, The process group approach to reliable distributed computing, Commun. ACM, Vol. 36, No. 12, pp. 37-54DOI
Foster I., Zhao Y., Raicu I., Lu S., Nov 2007, Cloud Computing and Grid Computing 360-Degree Compared, Proc. 2008 Grid Computing Environments Workshop (GCE), Austin, TX, USA, pp. 12-16DOI
Loeffler J., Jun. 15, 2021, AMD Zen 4 Epyc CPU could be an epic 128-core, 256-thread monster, Techradar, online available at Search
Shilov A., Oct. 1, 2021, Arm-Based 128-Core Ampere CPUs Cost a Fraction of x86 Price, Tom’s Hardware, online available at Search
IntelⓡCoreTMi9-10980XE Extreme Edition Processor (24.75M Cache, 3.00 GHz), online available at Search
IntelⓡCoreTMi9-10980XE Extreme Edition Processor (24.75M Cache, 3.00 GHz), online available at Search
Cho S., Sep 2021, Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems, MDPI BooksGoogle Search
Mead C., Oct 1990, Neuromorphic Electronic Systems, Proc. IEEE, Vol. 78, No. 10, pp. 1629-1639DOI
Silver D., et al. , Jan 2016, Mastering the game of Go with deep neural networks and tree search, Nature, Vol. 529, pp. 484-489DOI
Moore D., Jun 2014, Neuromorphic Computing Gets Ready for the (Really) Big Time, Comm. ACM, Vol. 57, No. 6, pp. 13-15DOI
Akopyan F., Oct 2015, TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 34, No. 10, pp. 1537-1557DOI
Davies M., Wild A., Orchard G., Sandamirskaya Y., Guerra G. A. F., Joshi P., Plank P., Risbud S. R., May 2021, Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook, Proc. IEEE, Vol. 109, No. 5, pp. 911-934DOI
Andreou A. G., May 2016, Real-time sensory information processing using the TrueNorth Neurosynaptic System, 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Vol. qc, No. canada, pp. 22-25DOI
Delbruck T., Liu S.-C., Systems, Data-Driven Neuromorphic DRAM-based CNN and RNN Accelerators, 2009 Sig. Proc. Soc. Asilomar Conference on SignalsDOI
Baek S., Yoo B. E., Lee I., Cho S., un. 30 - Jun. 2, 2021, Design of Compact 2T(0C) DRAM Cell Allowing Nondestructive Read Operation and Glance at Its Applications as Synaptic Device, in Proc. 2021 IEIE Summer Conf., pp. 515-516, Jeju, KoreaGoogle Search
Cho S., Baek S., Nov. 4, 2021, Two-Transistor Memory Cell, Synaptic Cell and Neuron Mimic Cell Using the Same and Operation Method Thereof, Korean Patent filed, Vol. 10-2021-0150751Google Search
Wingfield nand A., Byrnes D. L., May 1972, Decay of Information in Short-Term Memory, Science, Vol. 176, No. 4035, pp. 690-692DOI
Camina E., Güell F., Jun 2017, The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins, Front. Pharmacol., Vol. 8, pp. 438-1-438-16DOI
Botvinick M. M., Plaut D. C., Apr 2006, Short-Term Memory for Serial Order: A Recurrent Neural Network Model, Psychol. Rev., Vol. 113, No. 2, pp. 201-233DOI
Liu J., Zhang H., Yu T., Ni D., Ren L., Yang Q., Lu B., Wang D., Heinen R., Axmacher N., Xue G., Dec 2020, Stable maintenance of multiple representational formats in human visual short-term memory, PNAS, Vol. 117, No. 51, pp. 32329-32339DOI
Ichikawa K., Kaneko K., Aug 2021, Short-term memory by transient oscillatory dynamics in recurrent neural networks, Phys. Rev. Res., Vol. 3, No. 3, pp. 033193-1-033193-9DOI
Kim H., Cho S., Sun M.-C., Park J., Hwang S., Park B.-G., Oct 2016, Simulation Study on Silicon-Based Floating Body Synaptic Transistor with Short- and Long-Term Memory Functions and Its Spike Timing-Dependent Plasticity, J. Semicond. Technol. Sci., Vol. 16, No. 5, pp. 657-663DOI
Lee Y. J., Cho S., Dec 2021, Predominance of Carrier Diffusion in Determination of Data Retention in One-Transistor Dynamic Random-Access Memory, J. Semicond. Technol. Sci., Vol. 21, No. 6, pp. 406-411DOI
Lee Y. J., Cho S., Dec 2021, Predominance of Carrier Diffusion in Determination of Data Retention in One-Transistor Dynamic Random-Access Memory,, Vol. 21, No. 6, pp. 406-411DOI
Cho Y., Lee J. Y., Yu E., Han J.-H., Baek M.-H., Cho S., Park B.-G., Jan 2019, Design and Characterization of Semi-Floating-Gate Synaptic Transistor, Micromachines, Vol. 10, No. 1, pp. 32-41DOI
Yu E., Cho S., Park B.-G., Sep 2019, A Silicon-Compatible Synaptic Transistor Capable of Multiple Synaptic Weights toward Energy-Efficient Neuromorphic Systems, Electronics, Vol. 8, No. 10, pp. 1102-1-1102-12DOI
Yu E., Cho S., Roy K., Park B.-G., Aug 2020, A Quantum-Well Charge-Trap Synaptic Transistor with Highly Linear Weight Tunability, IEEE J. Electron Devices Soc., Vol. 8, pp. 834-840DOI
Ansari Md. H. R., Kannan U. M., Cho S., Jul 2021, Core-Shell Dual-Gate Nanowire Charge-Trap Memory for Synaptic Operations for Neuromorphic Applications, Nanomater., Vol. 11, No. 7, pp. 1773-1-1773-14DOI
Ansari Md. H. R., Cho S., Lee J.-H., Park B.-G., Dec 2021, Core-Shell Dual-Gate Nanowire Memory as a Synaptic Device for Neuromorphic Application, IEEE J. Electron Devices Soc., Vol. 9, pp. 1282-1289DOI
Eryilmaz S. B., Kuzum D., Jeyasingh R., Kim S. B., Brightsky M., Lam C., Wong H.-S. P., Jul 2014, Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, Front. Neurosci., Vol. 8, pp. 205-1-205-11DOI
Chen L., Wang T.-Y., Dai Y.-W., Cha M.-Y., Zhu H., Sun Q.-Q., Ding S.-J., Zhou P., Chua L., Zhang D. W., Sep 2018, Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications, Nanoscale, Vol. 10, No. 33, pp. 15826-15833DOI
Srinivasan G., Sengupta A., Roy K., Jul 2016, Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning, Sci. Rep., Vol. 6, pp. 29545-1-2954513DOI
Bang S., Kim M.-H., Kim T.-H., Lee D. K., Kim S., Cho S., Park B.-G., Dec 2018, Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application, Solid-State Electron., Vol. 150, pp. 60-65DOI
Lee D. K., Kim M.-H., Kim T.-H., Bang S., Choi Y.-J., Kim S., Cho S., Park B.-G., Apr 2019, Synaptic behaviors of HfO2 ReRAM by pulse frequency modulation, Solid-State Electron., Vol. 154, pp. 31-35DOI
Kim T.-H., Kim M.-H., Bang S., Lee D. K., Kim S., Cho S., Park B.-G., Jul 2020, Fabrication and Characterization of TiOx Memristor for Synaptic Device Application, IEEE Trans. Nanotechnol., Vol. 19, pp. 475-480DOI
Ryu J.-H., Kim B., Hussain F., Ismail M., Mahata C., Oh T., Imran M., Min K. K., Kim T.-H., Yang B.-D., Cho S., Park B.-G., Kim Y., Kim S., Jul 2020, Zinc Tin Oxide Synaptic Device for Neuromorphic Engineering, IEEE Access, Vol. 8, pp. 130678-130686DOI
Kim D., Jang J. T., Yu E., Park J., Min J., Kim D. M., Choi S.-J., Mo H.-S., Cho S., Roy K., Kim D., Aug 2020, Pd/IGZO/p+-Si Synaptic Device with Self-Graded Oxygen Concentration for Highly Linear Weight Adjustability and Improved Energy Efficiency, ACS Appl. Electron. Mater., Vol. 2, No. 8, pp. 2390-2397Google Search
Kang D., Jang J. T., Park S., Ansari Md. H. R., Bae J.-H., Choi S.-J., Kim D. M., Kim C., Cho S., Kim D., Apr 2021, Threshold-Variation-Tolerant Coupling-Gate α-IGZO Synaptic Transistor for More Reliably Controllable Hardware Neuromorphic System, IEEE Access, Vol. 9, pp. 59345-59352DOI
Rasheed U., Ryu H., Mahata C., Khalil R. M. A., Imran M., Rana A. M., Kousar F., Kim B., Kim Y., Cho S., Hussain F., Kim S., Oct 2021, Resistive switching characteristics and theoretical simulation of a Pt/α-Ta2O5/TiN synaptic device for neuromorphic applications, J. Alloys Compd., Vol. 877, pp. 160204-1-160204-10DOI
Kim S., Jung S., Kim M.-H., Chen Y.-C., Chang Y.-F., Ryoo K.-C., Cho S., Lee J.-H., Park B.-G., May 2018, Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate, Small, Vol. 14, No. 19, pp. 1704062-1-1704062-8DOI
Lee J. Y., Kim Y., Kim M.-H., Go S., Ryu S. W., Lee J. Y., Ha T. J., Kim S. G., Cho S., Park B.-G., Mar 2019, Ni/GeOx/p+ Si resistive-switching random-access memory with full Si processing compatibility and its characterization and modeling, Vacuum, Vol. 161, pp. 63-70DOI
Kim M.-H., Cho S., Park B.-G., May 2021, Nanoscale wedge resistive-switching synaptic device and experimental verification of vector-matrix multiplication for hardware neuromorphic application, Jpn. J. Appl. Phys., Vol. 60, No. 5, pp. 050905-1Google Search
Kim M.-H., Hwang S., Bang S., Kim T.-H., Lee D. K., Ansari Md. H. R., Cho S., Park B.-G., Sep 2021, A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning, IEEE Trans. Electron Devices, Vol. 68, No. 9, pp. 4411-4417DOI
Stone H. S., Jan 1970, A Logic-in-Memory Computer, IEEE Trans. Compt., Vol. c-19, No. 1, pp. 73-78DOI
Gokhale M., Holmes N., Iobst K., Apr 1995, Processing in Memory: The Terasys Massively Parallel PIM Array, IEEE Comput., Vol. 28, No. 4, pp. 23-31DOI
UPMEM PIM Soluition: DRAM Processing Unit (DPU), UPMEM Official website, online available at Search
HBM PIM: Memory redesigned to advance AI, Samsung official website, online available at Search
Sebastian A., Gallo M. L., Khaddam-Aljameh R., Eleftheriou E., Jul 2020, Memory devices and applications for in-memory computing, Nat. Nanotechnol., Vol. 15, pp. 529-544DOI
Agrawal A., Jaiswal A., Lee C., Roy K., Dec 2018, X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories, IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 65, No. 2, pp. 4219-4232DOI
Seshadri V., Hsieh K., Boroum A., Lee D., Kozuch M. A., Mutlu O., Gibbons P. B., Mowry T. C., Jul-Dec 2015, Fast Bulk Bitwise AND and OR in DRAM, IEEE Comput. Archit. Lett., Vol. 14, No. 2, pp. 127-131DOI
Seshadri V., Lee D., Mullins T., Hassan H., Boroumand A., Kim J., Kozuch M. A., Mutlu O., Gibbons P. B., Mowry T. C., Abmit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology, Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50), pp. 273-287Google Search
Lee J., Park B.-G., Kim Y., Sep 2019, Implementation of Boolean Logic Functions in Charge Trap Flash for In-Memory Computing, IEEE Electron Device Lett., Vol. 40, No. 9, pp. 1358-1361DOI
Kingra S. K., Parmar V., Chang C.-C., B.-Hudec , Hou T.-H., Suri M., Feb 2020, SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Device, Sci. Rep., Vol. 10, pp. 2567-1-2567-64DOI
Li Y., Zhong Y. P., Deng Y. F., Zhou Y. X., Xu L., Miao X. S., Dec 2013, Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory, J. Appl. Phys., Vol. 114, No. 23, pp. 234503-1-234503-4DOI
Kim M., Lee K., Kim S., Lee J.-H., Park B.-G., Kwon D., Nov 2021, Double-Gated Ferroelectric-Gate Field-Effect Transistor for Processing in Memory, IEEE Electron Device Lett., Vol. 42, No. 11, pp. 1607-1610DOI
Gonzalez-Zalba M. F., Ciccarelli C., Zarbo L. P., Irvine A. C., Campion R. C., Gallagher B. L., Jungwirth T., Ferguson A. J., Wunderlich J., Apr 2015, Reconfigurable Boolean Logic Using Magnetic Single-Electron Transistors, PLoS One, Vol. 10, No. 4, pp. 0125142-1-0125142-8Google Search