Mobile QR Code QR CODE

REFERENCES

1 
Liu T., Wong T. T. Y., Shen Z. J., 2020, A survey on switching oscillations in power converters, IEEE J. Emerg. Sel. Topics Power Electron., Vol. 8, No. 1, pp. 893-908DOI
2 
Meade T., , Parasitic inductance effect on switching losses for a high frequency dc-dc converter, Appl. Power Electron. Conf. Expo., Austin, TX, USA, pp. 3-9DOI
3 
Yang F., mar. 2019, Electrical performance advancement in SiC power module package design with Kelvin drain connection and low parasitic inductance, IEEE J. Emerg. Sel. Topics Power Electron., Vol. 7, No. 1, pp. 84-98DOI
4 
Jung D. Y., Dec 2017, Power semiconductor SMD package embedded in multilayered ceramic for low switching loss, ETRI J., Vol. 39, No. 6, pp. 866-873DOI
5 
Li S., July 2014, Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module, IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3616-3624DOI
6 
Wang M., Luo F., Xu L., Nov 2015, An optimized gate-loop layout for multi-chip SiC MOSFET power modules, in Proc. IEEE 3rd Workshop Wide Bandgap Power Devices Appl. (WiPDA), pp. 215-219DOI
7 
Chen Z., May 2014, A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications, IEEE Trans. Power Electron., Vol. 29, No. 5, pp. 2307-2320DOI
8 
Chen C., Luo F., Kang Y., Sep 2017, A review of SiC power module packaging: layout, material system and integration, CPSS Trans. Power Electron., Appl., Vol. 2, No. 3, pp. 170-186DOI
9 
Liang Z., Sep 2014, A phase-leg power module packaged with optimized planar interconnections and integrated double-sided cooling, IEEE J. Emerg. Sel. Topics Power Electron., Vol. 2, No. 3, pp. 443-450DOI
10 
Lee H., Smet V., Tummala R., Mar 2020, A review of SiC power module packaging technologies: challenges, advances, and emerging issues, IEEE J. Emerg. Sel. Topics Power Electron., Vol. 8, No. 1, pp. 239-255DOI
11 
Tang G., Chai T. C., Zhang X., May 2019, Thermal optimization and characterization of SiC-based high power electronics packages with advanced thermal design, IEEE Trans. Compon.,Packag., Manuf. Technol., Vol. 9, No. 5, pp. 854-863DOI
12 
Sugiura K., Apr., 2019, Reliability evaluation of SiC power module with sintered Ag die attach and stress-relaxation structure, IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 9, No. 4, pp. 609-15DOI
13 
Yasui K., May 2018, Improvement of power cycling reliability of 3.3 kV full-SiC power modules with sintered copper technology for Tj,max=175 ℃, in Proc. IEEE 30th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), pp. 455-458DOI
14 
Wang M., Luo F., Xu L., Dec 2017, A double-end sourced wire-bonded multichip SiC MOSFET power module with improved dynamic current sharing, IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 4, pp. 1828-1836DOI
15 
P.Beckedahl , Oct 2016, 400A, 1200V SiC power module with 1nH commutation inductance, in Proc. Int. Conf. Integr. Power Electron. Syst. (CIPS), pp. 1-6Google Search
16 
Jung D. Y., Jan–Feb 2021, Switching and heat-dissipation performance analysis of an LTCC-based leadless surface mount package using a power factor correction converter, 2021 Int. Conf. Electron. Inform. Commun. (ICEIC), Vol. jeju, No. korea, pp. 811-813DOI
17 
Jung D. Y., Aug 2020, Multi-layer ceramic based surface mount device packaging for 1200 V and 1700 V SiC SBD power semiconductors, 2020 Int. Conf. Consum. Electron. (ICCE-Asia), Vol. busan, No. korea, pp. 603-606DOI
18 
Terman F. E., 1945, Radio engineer’s handbook, McGraw-Hill, Vol. NY, USAGoogle Search
19 
Grover F. W., 2009, Inductance calculations, Dover Publications, Vol. NY, USAGoogle Search
20 
, https://www.globalpowertech.cn/