Mobile QR Code QR CODE

REFERENCES

1 
Fleetwood D. M., Schrimpf R. D., 2008, Defects in microelectronic materials and devices, CRC pressGoogle Search
2 
Mahapatra S., et al , 2013, A comparative study of different physics-based NBTI models, IEEE Transactions on Electron Devices, Vol. 60, No. 3, pp. 901-916DOI
3 
Franco J., et al , 2012, Impact of single charged gate oxide defects on the performance and scaling of nanoscaled FETs, Reliability Physics Symposium (IRPS)DOI
4 
Abakumov V. N., Perel V. I., Yassievich I. N., 1991, Nonradiative recombination in semiconductors, Elsevier, Vol. 33Google Search
5 
Tsuchiya T., 2011, Interactions between interface traps in electron capture/emission processes: deviation from charge pumping current based on the Shockley–Read–Hall theory, Applied Physics Express, Vol. 4, No. 9, pp. 094104Google Search
6 
Huang K., Rhys A., 1950, Theory of light absorption and non-radiative transitions in F-centres, Proc. R. Soc. Lond. A, Vol. 204, No. 1078, pp. 406-423DOI
7 
Henry C. H., Vo Lang D., 1977, Nonradiative capture and recombination by multiphonon emission in GaAs and GaP, Physical Review B, Vol. 15, pp. 989DOI
8 
Shi L., Xu K., Wang L. W., 2015, Comparative study of ab initio nonradiative recombination rate calculations under different formalisms, Physical Review B, Vol. 91, pp. 205315DOI
9 
Pässler R., 1989, Comparison between static and adiabatic coupling mechanisms for nonradiative multiphonon transitions in semiclassical approximation I. Tunnelling at small relaxation, Czechoslovak Journal of Physics B, Vol. 39, No. 2, pp. 155-195DOI
10 
Giustino F., 2017, Electron-phonon interactions from first principles, Reviews of Modern Physics, Vol. 89, pp. 015003DOI
11 
Freysoldt C., et al , 2014, First-principles calculations for point defects in solids, Reviews of modern physics, Vol. 86, pp. 253DOI
12 
Lyons J. L., Janotti A., Van de Walle C. G., 2014, Effects of carbon on the electrical and optical properties of InN, GaN, and AlN, Physical Review B, Vol. 89, pp. 035204DOI
13 
Dreyer C. E., et al , 2016, Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters, Applied Physics Letters, Vol. 108, No. 14, pp. 141101DOI
14 
Lyons J. L., Van de Walle Chris G., 2017, Computationally predicted energies and properties of defects in GaN, NPJ Computational Materials, Vol. 3, No. 1, pp. 12DOI
15 
Giustino F., 2014, Materials modelling using density functional theory: properties and predictions, Oxford University PressGoogle Search
16 
Burke K., 2012, Perspective on density functional theory, The Journal of chemical physics, Vol. 136, No. 15, pp. 150901DOI
17 
Shi L., Wang L. W., 2012, Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors, Physical review letters, Vol. 109, No. 24, pp. 245501DOI
18 
Alkauskas A., Yan Q., Van de Walle C. G., 2014, First-principles theory of nonradiative carrier capture via multiphonon emission, Physical Review B, Vol. 90, pp. 075202DOI
19 
Kresse G., Furthmüller J., 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B, Vol. 54, pp. 11169DOI
20 
Togo A., Tanaka I., 2015, First principles phonon calculations in materials science, Scripta Materialia, Vol. 108, pp. 1-5DOI
21 
Ong S. P., et al , 2013, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, Computational Materials Science, Vol. 68, pp. 314-319DOI
22 
Broberg D., et al , 2016, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators, arXiv:1611.07481DOI
23 
Freysoldt C., et al , 2009, Fully ab initio finite-size corrections for charged-defect supercell calculations, Physical review letters, Vol. 102, pp. 016402DOI
24 
Heyd J., et al , 2003, Hybrid functionals based on a screened Coulomb potential, The Journal of chemical physics, Vol. 118, No. 18, pp. 8207-8215DOI
25 
Tsetseris L., Pantelides S. T., 2006, Oxygen Migration, Agglomeration, and Trapping: Key Factors for the Morphology of the Si−SiO2 Interface, Physical review letters, Vol. 97, pp. 116101DOI
26 
Ribeiro Jr M., RC Fonseca L., Ferreira L. G., 2009, Accurate prediction of the Si/SiO2 interface band offset using the self-consistent ab initio DFT/LDA-1/2 method, Physical Review B, Vol. 79, pp. 241312DOI
27 
Jain Anubhav, et al , 2013, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, Apl Materials, Vol. 1, No. 1, pp. 011002DOI
28 
Perdew J. P., Burke K., Ernzerhof M., 1996, Generalized gradient approximation made simple, Physical review letters, Vol. 77, pp. 3865DOI
29 
Alkauskas A., Broqvist P., Pasquarello A., 2008, Defect energy levels in density functional calculations: Alignment and band gap problem, Physical review letters, Vol. 101, pp. 046405DOI
30 
Schanovsky F., Goes W., Grasser T., 2011, Multiphonon hole trapping from first principles, J. Vac. Sci. Technol.: Materials, Processing, Measurement, and Phenomena, Vol. 29, No. 1, pp. 01A201DOI
31 
Madelung O., Rössler U., Schulz M., 2002, Impurities and Defects in Group IV Elements, IV-IV and III-V Compounds. Part a: Group IV Elements, Numerical Data and Functional Relationships in Science and Technology–New Series, Group III Condensed Matter, Vol. 41, pp. 877Google Search
32 
Mooney P. M., et al , 1977, Defect energy levels in boron-doped silicon irradiated with 1-MeV electrons, Physical Review B, Vol. 15, pp. 3836DOI
33 
Troxell J. R., Watkins G. D., 1980, Interstitial boron in silicon: A negative-U system, Physical Review B, Vol. 22, pp. 921DOI
34 
Kirton M. J., Uren M., 1986, Capture and emission kinetics of individual Si: SiO2 interface states, Applied physics letters, Vol. 48, No. 19, pp. 1270-1272DOI
35 
Saks N. S., Ancona M. G., 1990, Determination of interface trap capture cross sections using three-level charge pumping, IEEE Electron Device Letters, Vol. 11, No. 8, pp. 339-341DOI