Mobile QR Code QR CODE

REFERENCES

1 
Fisher R. S., Velasco A. L., 2014, Electrical brain stimulation for epilepsy, Nature Reviews Neurology, Vol. 10, No. 5, pp. 261-270DOI
2 
Stern J. H., Sperling M. R., Goodman S. E., Devinsky S. M., Gruber R. E., Krauss R. E., French J. H., Murphy S. A., Fountain S. J., Jobst R. G., 2021, The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy, Epilepsia, Vol. 62, No. 6, pp. 1306-1317DOI
3 
Liu X., Lu Z., Li J., Wang S., Luen-Zheng , Zhao X., Sun B., Yu H., 2024, An 8-channel high-voltage neural stimulation IC design with exponential waveform output, Neuroelectronics, Vol. 3, No. 4, pp. 245-258DOI
4 
Yin M., Wang X., Zhang L., Ghu S., Wang Z., Huang S., Yin M., 2024, A scalable, programmable neural stimulator for enhancing generalizability in neural interface applications, Biosensors, Vol. 14, No. 7, pp. 323DOI
5 
Pu H., Malekzadeh-Arasteh O., Danesh A. R., Nenadic Z., Do A. H., Heydari P., 2022, A CMOS dual-mode brain–computer interface chipset with 2-mV precision time-based charge balancing and stimulationside artifact suppression, IEEE Journal of Solid-State Circuits, Vol. 57, No. 6, pp. 1824-1840DOI
6 
Park M., Eom K., Lee H.-S., Ku S.-B., Lee H.-M., 2024, A 9-V-tolerant stacked-switched-capacitor stimulation system with level-adaptive switch control and rapid stimulus-synchronized charge balancing for implantable devices, IEEE Journal of Solid-State Circuits, Vol. 59, No. 3, pp. 817-829DOI
7 
Tao J. Y., Hierlemann A., 2018, A 15-channel 30-V neural stimulator for spinal cord repair, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 26, No. 10, pp. 2185-2189DOI
8 
Taschwer A., Butz N., Köhler M., Rossbach D., Manoli Y., 2018, A charge balanced neural stimulator with 3.3 V to 49 V supply compliance and arbitrary programmable current pulse shapes, Proc. of 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4DOI
9 
Salam M. T., Perez-Velazquez J. L., Genov R., 2015, Comparative analysis of seizure control efficacy of 5 Hz and 20 Hz responsive deep brain stimulation in rodent models of epilepsy, Proc. of 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS)DOI
10 
Paschen E., Elgueta C., Heining K., Holtkamp J., Meier C., Elger C. E., 2020, Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy, eLife, Vol. 9DOI
11 
Rashid S., Pho S., Czigler G., Werz M., Werz M. A., Durand D. M., 2012, Low frequency stimulation of ventral hippocampal commissures reduces seizures in a rat model of chronic temporal lobe epilepsy, Epilepsia, Vol. 53, No. 1, pp. 147-156DOI
12 
Sit J.-J., Sarpeshkar R., 2007, A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation, IEEE Transactions on Biomedical Circuits and Systems, Vol. 1, No. 3, pp. 172-183DOI
13 
Son J.-Y., Cha H.-K., 2020, An implantable neural stimulator IC with anodic current pulse modulation based active charge balancing, IEEE Access, Vol. 8, pp. 136449-136458DOI
14 
Hosseinnejad M., Katebi M., Erfanian A., Karami M. A., 2022, A 2-mA charge-balanced neurostimulator in 0.18-μm/1.8 V standard CMOS process, International Journal of Circuit Theory and Applications, Vol. 51, No. 3, pp. 1092-1109DOI