Mobile QR Code QR CODE

References

1 
C. Mead, ``Neuromorphic electronic systems,'' Proceedings of the IEEE, vol. 78, no. 10, pp. 1629-1636, Oct. 1990.DOI
2 
P. A. Merolla et al., ``A million spiking-neuron integrated circuit with a scalable communication network and interface,'' Science, vol. 345, no. 6197, pp. 668-673, Aug. 2014.DOI
3 
M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday et al., ``Loihi: A neuromorphic many-core processor with on-chip learning,'' IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan. 2018.DOI
4 
C. Mayr, J. Partzsch, M. Noack, S. Hänzsche, S. Scholze, S. Höppner, G. Ellguth, and R. Schüffny, ``A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched-capacitor circuits,'' IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 243-254, Feb. 2015.DOI
5 
E. Rahiminejad, F. Azad, A. Parvizi-Fard, M. Amiri, and B. Linares-Barranco, ``A neuromorphic CMOS circuit with self-repairing capability,'' IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 5, pp. 2246-2258, May 2022.DOI
6 
Y. Taur, ``CMOS design near the limit of scaling,'' IBM Journal of Research and Development, vol. 46, no. 2/3, pp. 213-222, May 2002.DOI
7 
T. Pešić-Brđanin and B. L. Dokić, ``Strained silicon layer in CMOS technology,'' Electronics, vol. 18, no. 2, pp. 63-69, Dec. 2014.DOI
8 
L. Chua, ``Memristor—the missing circuit element,'' IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971.DOI
9 
R. S. Williams, ``How we found the missing memristor,'' IEEE Spectrum, vol. 45, no. 12, pp. 28-35, Dec. 2008.DOI
10 
O. Krestinskaya, A. P. James, and L. O. Chua, ``Neuromemristive circuits for edge computing: A review,'' IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 1, pp. 4-23, Jan. 2020.DOI
11 
A. Gebregiorgis, A. Singh, A. Yousefzadeh, D. Wouters, R. Bishnoi, F. Catthoor, et al., ``Tutorial on memristor-based computing for smart edge applications,'' Memories: Materials, Devices, Circuits and Systems, vol. 4, p. 100025, Jul. 2023.DOI
12 
Y. Xiao, C. Gao, J. Jin, W. Sun, B. Wang, Y. Bao, et al., ``Recent progress in neuromorphic computing from memristive devices to neuromorphic chips,'' Advanced Devices & Instrumentation, vol. 5, no. 1, 0044, Dec. 2024.DOI
13 
S.-O. Park, H. Jeong, J. Park, J. Bae, and S. Choi, ``Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing,'' Nature Communications, vol. 13, p. 2888, Jun. 2022.DOI
14 
H. Kim, M. R. Mahmoodi, H. Nili, and D. B. Strukov, ``4K-memristor analog-grade passive crossbar circuit,'' Nature Communications, vol. 12, p. 5198, Aug. 2021.DOI
15 
M. Kimura, R. Tanaka, S. Akane, I. Horiuchi, Y. Hiroshima, and Y. Nakashima, ``Neuromorphic system using crosspoint-Type TaOx/Ta memristors and direct device training for associative memory,'' in IEEE Transactions on Electron Devices, vol. 70, no. 9, pp. 4635-4640, Sep. 2023.DOI
16 
Q. Xia and J. J. Yang, ``Memristive crossbar arrays for brain-inspired computing,'' Nature Materials, vol. 18, no. 4, pp. 309-323, Apr. 2019.DOI
17 
S. Sun, H. Xu, J. Li, Q. Li, and H. Liu, ``Cascaded architecture for memristor crossbar array based larger-scale neuromorphic computing,'' IEEE Access, vol. 7, pp. 61679-61688, 2019.DOI
18 
M. Ansari, A. Fayyazi, M. Kamal, A. Afzali-Kusha, and M. Pedram, ``OCTAN: An On-chip training algorithm for memristive Neuromorphic circuits,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 12, pp. 4687-4698, Dec. 2019.DOI
19 
S. Wen, H. Wei, Z. Yan, Z. Guo, Y. Yang, T. Huang, et al., ``Memristor-based design of sparse compact convolutional neural network,'' IEEE Transactions on Network Science and Engineering, vol. 7, no. 3, pp. 1431-1440, Jul.-Sep. 2020.DOI
20 
S. Choi, S. Jang, J.-H. Moon, J. C. Kim, H. Y. Jeong, P. Jang, et al., ``A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems,'' NPG Asia Materials, vol. 10, no. 12, pp. 1097-1106, Dec. 2018.DOI
21 
F. Aguirre, et al., “Hardware implementation of memristor-based artificial neural networks,” Nature Communications, vol. 15, no. 1, 1974, Mar. 2024.DOI
22 
G. C. Adam, A. Khiat, and T. Prodromakis, ``Challenges hindering memristive neuromorphic hardware from going mainstream,'' Nature Communications, vol. 9, 5267, Dec. 2018.DOI
23 
Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, et al., ``Brain-inspired computing with memristors: Challenges in devices, circuits, and systems,'' Applied Physics Reviews, vol. 7, 011308, 2020.DOI
24 
H. Yu, L. Ni, and H. Huang, ``Distributed in-memory computing on binary memristor-crossbar for machine learning,'' in Advances in Memristors, Memristive Devices and Systems, S. Vaidyanathan and C. Volos, Eds., Springer, Cham, Switzerland, pp. 275-304, 2017.DOI
25 
F. Jebali, M. Saighi, L. Boitard, S. Balatti, P. Froidevaux, and C. Alibart, et al., ``Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell,'' Nature Communications, vol. 15, no. 1, p. 1234, 2024.DOI
26 
L. Huang, J. Diao, H. Nie, W. Wang, Z. Li, Q. Li, and H. Liu, ``Memristor-based binary convolutional neural network architecture with configurable neurons,'' Frontiers in Neuroscience, vol. 15, 639526, Mar. 2021.DOI
27 
S. N. Truong, S.-J. Ham, and K.-S. Min, ``Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition,'' Nanoscale Research Letters, vol. 9, p. 629, Nov. 2014.DOI
28 
S. N. Truong, S. Shin, S. Byeon, J. Song, and K. Min, ``New twin crossbar architecture of binary memristors for low-power image recognition with discrete cosine transform,'' IEEE Transactions on Nanotechnology, vol. 14, pp. 1104-1111, Nov. 2015.DOI
29 
S. N. Truong, ``Single crossbar array of memristors with bipolar inputs for neuromorphic image recognition,'' IEEE Access, vol. 8, pp. 69327-69332, Apr. 2020.DOI
30 
M. Le and S. N. Truong, ``Research on the impact of data density on memristor crossbar architectures in neuromorphic pattern recognition,'' Micromachines, vol. 14, 1990, Oct. 2023.DOI
31 
Cadence, Spectre® circuit simulator reference, San Jose, CA 95134, USA: Cadence Design Systems, 2003.URL
32 
C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, ``A memristor device model,'' IEEE Electron Device Letters, vol. 32, no. 10, pp. 1436-1438, Oct. 2011.DOI
33 
S. Ham, H. Mo, and K. Min, ``Low-power VDD/3 write scheme with inversion coding circuit for complementary memristor array,'' IEEE Transactions on Nanotechnology, vol. 12, pp. 851-857, 2013.DOI
34 
J. Rajendran, R. Karri, and G. S. Rose, ``Improving tolerance to variations in memristor-based applications using parallel memristors,'' IEEE Transactions on Computers, vol. 64, no. 3, pp. 733-746, Mar. 2015.DOI
35 
D. Niu, Y. Chen, C. Xu, and Y. Xie, ``Impact of process variations on emerging memristor,'' Proc. of the Design Automation Conference (DAC), Anaheim, CA, USA, pp. 877-882, 2010.DOI
36 
M. Le, T. K. H. Pham, and S. N. Truong, ``Noise and memristance variation tolerance of single crossbar architectures for neuromorphic image recognition,'' Micromachines, vol. 12, 690, Jun. 2021.DOI