Mobile QR Code QR CODE

References

1 
J. Lee, J. Jang, W. Lee, B. Suh, H. Yoo, and B. Park, ``A tri-band dual-concurrent Wi-Fi 802.11be transceiver achieving -46dB TX/RX EVM floor at 7.1GHz for a 4K-QAM 320MHz signal,'' Proc. of IEEE International Solid-State Circuits Conference (ISSCC), pp. 78-79, Feb. 2024.DOI
2 
T.-M. Chen, M.-C. Liu, P.-A. Wu, W.-K. Hong T.-W. Liang, and W.-P. Chao, ``A Wi-Fi tri-band switchable transceiver with 57.9fs-RMS-jitter frequency synthesizer, achieving -42.6dB EVM floor for EHT320 4096-QAM MCS13 signal,'' Proc. of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.181-184, Jun. 2023.DOI
3 
S. Yun, J. Cho, S Jo, I.-C. Hwang, Y. Kim, and S. Jeong, ``A 2.4/5 GHz dual-band low-noise and highly linear receiver with a new power-efficient feedforward OPAMP for WiFi-6 applications,'' IEEE ACCESS, vol. 11, no. 12, pp. 137264-137273, Dec. 2023DOI
4 
E. Ru, W.-K. Li, Z. Deng, E. Rostami, P.-A. Wu, and K.-M. Chang, ``A $4\times4$ dual-band dual-concurrent WiFi 802.11ax transceiver with integrated LNA, PA and T/R switch achieving +20dBm 1024-QAM MCS11 Pout and -43dB EVM floor in 55nm CMOS,'' Proc. of IEEE International Solid‑State Circuits Conference (ISSCC), pp. 178-179, Feb. 2020.DOI
5 
S. Kawai, H. Aoyama, R. Ito, Y. Shimizu, M. Ashida, and A. Maki, ``An 802.11ax 4×4 spectrum-efficient WLAN AP transceiver SoC supporting 1024QAM with frequency-dependent IQ calibration and integrated interference analyzer,'' Proc. of IEEE International Solid-State Circuits Conference - (ISSCC), pp. 442-443, Feb. 2018.DOI
6 
C. Wu, C. Hunter, J. Bae, H. Kim, J. Chang, and J. Sharpe, ``A 28nm CMOS wireless connectivity combo IC with a reconfigurable 2×2 MIMO WiFi supporting 80+80MHz 256-QAM, and BT 5.0,'' Proc. of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.300-303, Jun. 2018.DOI
7 
S. Yan, L. Ye, R. Kulkarni, E. Myers, H.-C. Shih, and H. Wu, ``An 802.11a/b/g/n/ac WLAN transceiver for $2\times2$ MIMO and simultaneous dual-band operation with +29 dBm Psat integrated power amplifiers,'' IEEE Journal of Solid-State Circuits, vol. 52, no. 7, pp. 1798-1813, July 2017.DOI
8 
Y. H. Chee, F. Golcuk, T. Matsuura, C. Beale, J. F. Wang, and O. Shanaa, ``A digitally assisted CMOS WiFi 802.11ac/11ax front-end module achieving 12% PA efficiency at 20 dBm output power with 160 MHz 256-QAM OFDM signal,'' Proc. of IEEE International Solid-State Circuits Conference (ISSCC), pp. 292–293, Feb. 2017.DOI
9 
F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, ``Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,'' IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.DOI
10 
S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, ``Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,'' IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008DOI
11 
S. Kim and K. Kwon, ``A 50-MHz–1-GHz 2.3-dB NF noise-cancelling balun-LNA employing a modified current-bleeding technique and balanced loads,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 546–554, Feb. 2019.DOI
12 
S. Kim and K. Kwon, ``Broadband balun-LNA employing local feedback $g_m$-boosting technique and balanced loads for low-power low-voltage applications,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4631-4640, Dec. 2020.DOI
13 
R. Zhou, J. Yang, X. Zhao, D. Sun, S. Liu, and Z. Zhu, ``A 0.1-to-4.3-GHz variable-gain balun LNA with dual-path noise-canceling technique,'' IEEE Transactions on Microwave Theory and Techniques, vol. 73, no. 2, pp. 1276-1284, Feb. 2025.DOI
14 
H. Yu, Y. Chen, C C Boom, C. Li, P.-I. Mak, and R. P. Martins, ``A 0.044-mm$^2$ 0.5-to-7 GHz resistor-plus-source-follower-feedback noise cancelling LNA achieving a flat NF of 3.3$\pm$0.45 dB,'' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 71-75, Jan. 2019DOI
15 
Z. Liu, C. C. Boom, X. Yu, C. Li, K Yang, and Y. Liang, ``A 0.061-mm$^2$ 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction,'' IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 3093–3106, Jun. 2021.DOI
16 
Z. Liu and C. C. Boon, ``A 0.092-mm$^2$ 2–12-GHz noise-cancelling low-noise amplifier with gain improvement and noise Reduction,'' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 10, pp. 4013-4017, Oct. 2022.DOI