Mobile QR Code QR CODE

References

1 
K. G. Tarakji and B. L. Wolkoff, ``Management of cardiac implantable electronic device infections: The challenges of understanding the scope of the problem and its associated mortality,'' Expert Review of Cardiovascular Therapy, vol. 11, pp. 607-616, 2013.DOI
2 
B. Al-Ghamdi, H. E. Widaa, M. A. Shahid, M. Aladmawi, J. Alotaibi, A. A. Sanei, and M. Halim, ``Cardiac implantable electronic device infection due to Mycobacterium species: A case report and review of the literature,'' BMC Research Notes, vol. 9, pp. 1-10, 2016.DOI
3 
K. O. Abode-Iyamah, H.-Y. Chiang, R. W. Woodroffe, B. Park, F. J. Jareczek,, Y. Nagahama, N. Winslow, L. A. Herwaldt, and J. D. W. Greenlee, ``Deep brain stimulation hardware-related Infections: Ten-year experience at a single institution,'' Journal of Neurosurgery, vol. 130, no. 2, pp. 629-638, 2018.DOI
4 
S. Zerbo, G. Perrone, C. Bilotta, V. Adelfio, G. Malta, P. Pasquale, E. Maresi, and A. Argo, ``Cardiovascular implantable electronic device infection and new insights about correlation between pro-inflammatory markers and heart failure: A systematic literature review and meta-analysis,'' Frontiers in Cardiovascular Medicine, vol. 8, pp. 1-22, 2021.DOI
5 
S. Oh, J. Jekal, J. Liu, J. Kim, J. Park, T. Lee, and K. Jang, ``Bioelectronic implantable devices for physiological signal recording and closed-loop neuromodulation,'' Advanced Functional Materials, vol. 34, pp. 1-52, 2024.DOI
6 
L. Cai, A. Burton, D. A. Gonzales, K. A. Kasper, A. Azami, R. Peralta, M. Johnson, J. A. Bakall, E. B. Villalobos, E. C. Ross, J. A. Szivek, D. S. Margolis, and P. Gutruf, ``Osseosurface electronics—thin, wireless, batteryfree and multimodal musculoskeletal biointerfaces,'' Nature Communications, vol. 12, pp. 1-12, 2021.DOI
7 
S. R. Madhvapathy, J. J. Wang, H. Wang, M. Patel, A. Chang, X. Zheng, Y. Huang, Z. J. Zhang, L. Gallon, and J. A. Rogers, ``Implantable bioelectronic systems for early detection of kidney transplant rejection,'' Sciences, vol. 381, no.6662, pp. 1105-1112, 2023.DOI
8 
C. Shi, V. Andino-Pavlovsky, S. A. Lee, T. Costa, J. Elloian, E. E. Konofagou, and K. L. Shepard, ``Application of a sub–0.1-mm$^3$ implantable mote for in vivo real-time wireless temperature sensing,'' Science Advances, vol. 7, no. 19, pp. 1-9, 2021.DOI
9 
T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, and T. Someya, ``Ultraflexible, large-area, physiological temperature sensors for multipoint measurements,'' Proceedings of the National Academy of Sciences, vol. 112, no.47, pp. 14533-14538, 2015.DOI
10 
M. K. Law, S. Lu, T. Wu, A. Bermak, P. I. Mak, and R. P. Martins, ``A 1.1 $\mu$W CMOS smart temperature sensor with an inaccuracy of $\pm$0.2$^\circ$C (3$\sigma$) for clinical temperature monitoring,'' IEEE Sensors Journal, vol. 16, no. 8, pp. 2272-2281, 2016.DOI
11 
S. Pan and K. A. A. Makinwa, K. A. A., ``A 6.6-$\mu$W wheatstone-bridge temperature sensor for biomedical applications,'' IEEE Solid-State Circuits Letters, vol. 3, pp. 334-337, 2020.DOI
12 
S. Minto, A. Cable, and W. Saadeh, ``A 206 $\mu$W vital signs monitoring system on chip for measuring five vitals,'' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 32, no.9, pp. 1652-1660, 2024.DOI
13 
J. Lee, S. S. Kwak, Y. C. Im, H. Lee, and Y. S. Kim, ``A BJT/resistor hybrid CMOS temperature sensor with low 3$\sigma$-unaccuracy at 0-pt trim,'' IEEE Transactions on Instrumentation and Measurement, vol. 74, pp. 1-8, 2025.DOI
14 
M. Imran and A. Bhattacharyya, ``Effect of thin film thicknesses and materials on the response of RTDs and microthermocouples,'' IEEE Sensors Journal, vol. 6, no. 6, pp. 1459-1467, 2006.DOI
15 
S. K. Sen, T. K. Panb, and P. Ghosal, ``An improved lead wire compensation technique for conventional four wire resistance temperature detectors (RTDs),'' Measurement, vol. 44, pp. 842-846, 2011.DOI
16 
M. F. P. Cruz, E. Fiedler, O. F. C. Monjarás, and T. Stieglitz, ``Integration of temperature sensors in polyimide-based thin-film electrode arrays,'' Current Directions in Biomedical Engineering, vol. 1, no. 1, pp. 529-533, 2015.DOI
17 
S. B. Goncalves, J. M. Palha, S. Pimenta, T. Dong, H. C. Fernandes, Z. Yang, J. F. Ribeiro, M. R. Souto, and J. H. Correia, ``LED optrode with integrated temperature sensing for optogenetics,'' Micromachines, vol. 9, 473, 2018.DOI
18 
J. Cui, W. Zhang, H. Liu, X. Li, S. Jiang, B. Zhang, and Y. Song, ``Fabrication and characterization of nickel thin film as resistance temperature detector,'' Vacuum, vol. 176, 109288, 2020.DOI
19 
A. Feteira, ``Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective,'' Journal of the American Ceramic Society, vol. 92, no. 5, pp. 967-983, 2009.DOI
20 
A. V. Tran, X. Zhang, and B. Zhu, ``Mechanical structural design of a piezoresistive pressure sensor for low-pressure measurement: A computational analysis by increases in the sensor sensitivity,'' Sensors, vol. 18, 2018.DOI
21 
M. Liu, Z. Wang, P. Jiang, and G. Yan, ``Temperature compensation method for piezoresistive pressure sensors based on gated recurrent unit,'' Sensors, vol. 24, no. 16, 5394, 2024.DOI
22 
J. Kim, J. Kim, and H. Ko, ``Low-power photoplethysmogram acquisition integrated circuit with robust light interference compensation,'' Sensors, vol. 16, no. 1, 46, 2016.DOI
23 
N. Chettri, A. Aprile, E. Bonizzoni, and P. Malcovati, ``Advances in PPG sensors data acquisition with light-to-digital converters: A review,'' IEEE Sensors Journal, vol. 24, no.15, pp. 25261-25274, 2024.DOI
24 
K. A. A. Makinwa, ``Smart temperature sensors in standard CMOS,'' Procedia Engineering, vol. 5, pp. 930-939, 2010.DOI