Mobile QR Code QR CODE

References

[1]

S. C. Mukhopadhyay and N. K. Suryadevara, “Internet of Things: Challenges and opportunities,” Internet of Things: Challenges and Opportunities, 1st ed., S. C. Mukhopadhyay, Ed., Springer International Publishing, Cham, Switzerland, pp. 1-17, 2014. [CrossRef]

[2]

F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of Things,” International Journal of Communication Systems, vol. 25, no. 9, pp. 1101-1102, Septermber 2012. [CrossRef]

[3]

J. M. Chatterjee, R. Kumar, M. Khari, D. T. Hung, and D.- N. Le, “Internet of Things based system for smart kitchen,” International Journal of Engineering and Manufacturing, vol. 8, no. 4, pp. 29-39, July 2018. [CrossRef]

[4]

R. Blasco, A. Marco, R. Casas, D. Cirujano, and R. Picking, “A smart kitchen for ambient assisted living,” Sensors, vol. 14, no. 1, pp. 1629-1653, January 2014. [CrossRef]

[5]

R. Kadam, P. Mahamuni, and Y. Parikh, “Smart home system,” International Journal of Innovative Research in Advanced Engineering, vol. 2, no. 1, pp. 81-86, January 2015.

[6]

G. Bedi, G. K. Venayagamoorthy, and R. Singh, “Internet of Things (IoT) sensors for smart home electric energy usage management,” Proc. of 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), Galle, Sri Lanka, pp. 1-6, 2016. [CrossRef]

[7]

T. Kalsoom, N. Ramzan, S. Ahmed, and M. Ur-Rehman, “Advances in sensor technologies in the era of smart factory and industry 4.0,” Sensors, vol. 20, no. 23, pp. 6783- 6804, November 2020. [CrossRef]

[8]

M. Pech, J. Vrchota, and J. Bedná˘r, “Predictive maintenance and intelligent sensors in smart factory: Review,” Sensors, vol. 21, no. 4, pp. 1470-1509, February 2021. [CrossRef]

[9]

J. Gao, J. Wang, L. Zhang, Q. Yu, Y. Huang, and Y. Shen, “Magnetic signature analysis for smart security system based on TMR magnetic sensor array,” IEEE Sensors Journal, vol. 19, no. 8, pp. 3149-3155, April 2019. [CrossRef]

[10]

C. Sisavath, and L. Yu, “Design and implementation of security system for smart home based on IOT technology,” Procedia Computer Science, vol. 183, pp. 4-13, April 2021. [CrossRef]

[11]

J. Zhang, Y. Wang, S. Li, and S. Shi, “An architecture for IoT-enabled smart transportation security system: A geospatial approach,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6205-6213, November 2020. [CrossRef]

[12]

S. Al-Sarawi, M. Anbar, R. Abdullah, and A. B. Al Hawari, “Internet of Things market analysis forecasts, 2020–2030,” Proc. of 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, pp. 449-453, 2020. [CrossRef]

[13]

N. Paudel and R. C. Neupane, “A general architecture for a real-time monitoring system based on the internet of things,” Internet Things, vol. 14, 100367, June 2021. [CrossRef]

[14]

W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, “Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis,” Nature, vol. 529, no. 7587, pp. 509-514, January 2016. [CrossRef]

[15]

X. Wan, J. Wang, L. Zhu, and J. Tang, “Gas sensing properties of Cu2O and its particle size and morphologydependent gas-detection sensitivity,” Journal of Materials Chemistry A, vol. 2, no. 33, pp. 13641-13647, June 2014. [CrossRef]

[16]

S. Kang, J. Lee, S. Lee, S.G. Kim, J.-K. Kim, H. Algadi, S. Al-Sayari, D.-E. Kim, D.E. Kim, and T. Lee, “Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing,” Advanced Electronic Materials, vol. 2, no. 12, 1600356, November 2016. [CrossRef]

[17]

C.-H. Hsia, A. Wuttig, and H. Yang, “An accessible approach to preparing water-soluble Mn2+-doped (CdSSe)ZnS (core)shell nanocrystals for ratiometric temperature sensing,” ACS Nano, vol. 5, no. 12, pp. 9511-9522, October 2011. [CrossRef]

[18]

J. Shin, Y. Hong, M. Wu, Y. Jang, J. S. Kim, B.-G. Park, C. S. Hwang, and J.-H. Lee, “Highly improved response and recovery characteristics of Si FET-type gas sensor using pre-bias,” Proc. of 2016 IEEE International Electron Device Meeting (IEDM), San Francisco, CA, USA, pp. 18.1.1-18.1.4, 2016. [CrossRef]

[19]

R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi, “An overview of IoT sensor data processing, fusion, and analysis techniques,” Sensors, vol. 20, no. 21, pp. 6076-6098, October 2020. [CrossRef]

[20]

J. M. Nassar, G. A. T. Sevilla, S. J. Velling, M. D. Cordero, and M. M. Hussain, “A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible silicon for IoT applications,” Proc. of 2016 IEEE International Electron Device Meeting (IEDM), San Francisco, CA, USA, pp. 18.6.1-18.6.4, 2016. [CrossRef]

[21]

A. Sharma, Y. Kumar, K. Mazumder, A. K. Rana, and P. M. Shirage, “Controlled $Z_{n1-x}Ni_xO$ nanostructures for an excellent humidity sensor and a plausible sensing mechanism,” New Journal of Chemistry, vol. 42, no. 11, pp. 8445- 8457, April 2018. [CrossRef]

[22]

S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. S. Presicce, and A. M. Taurino, “Solid state gas sensors: State of the art and future activities,” Journal of Optoelectronics and Advanced Materials, vol. 5, no. 5, pp. 1335-1348, August 2003. [CrossRef]

[23]

Y. Zhao, B. Yang, and J. Liu, “Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor,” Sensors and Actuators B: Chemical, vol. 271, pp. 256-263, October 2018. [CrossRef]

[24]

T. Fei, H. Zhao, K. Jiang, X. Zhou, and T. Zhang, “Polymeric humidity sensors with nonlinear response: Properties and mechanism investigation,” Journal of Applied Polymer Science, vol. 130, no. 3, pp. 2056-2061, May 2013. [CrossRef]

[25]

M. Aoki, Y. Sakai, and T. Masuhara, “Low 1/f noise design of Hi-CMOS devices,” IEEE Transactions on Electron Devices, vol. 29, no. 2, pp. 296-299, February 1982. [CrossRef]

[26]

T. Ito, T. Nakamura, and H. Ishikawa, “Advantages of thermal nitride and nitroxide gate films in VLSI process,” IEEE Jorunal of Solid-State Circuits, vol. 17, no. 2, pp. 128-132, April 1982. [CrossRef]

[27]

J. Shin, Y. Hong, M. Wu, J.-H. Bae, H.-I. Kwon, B.-G. Park, and J.-H. Lee, “An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS2 as a sensing layer by pulse measurement,” Sensors and Actuators B: Chemical, vol. 258, pp. 574-579, April 2018. [CrossRef]

[28]

P. Shankar, and J. B. B. Rayappan, “Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases - A review,” Science Letters Journal, vol. 4, no. 4, pp. 126, 2015.

[29]

F. E. Annanouch, S. Roso, Z. Haddi, S. Vallejos, P. Umek, C. Bittencourt, C. Blackman, T. Vilic, and E. Llobet, “p-Type PdO nanoparticles supported on n-type WO3 nanoneedles for hydrogen sensing,” Thin Solid Films, vol. 618, pp. 238-245, November 2016. [CrossRef]

[30]

C. W. Walter, C. F. Hertzler, P. Devynck, G. P. Smith, and J. R. Peterson, “Photodetachment of $WO^-_3$ : The electron affinity of WO3,” The Journal of Chemical Physics, vol. 95, no. 2, pp. 824-827, July 1991. [CrossRef]

[31]

C. Wang, Y. Zhang, X. Sun, Y. Sun, F. Liu, X. Yan, C. Wang, P. Sun, and G. Lu, “Preparation of Pd/PdO loaded WO3 microspheres for H2S detection,” Sensors and Actuators B: Chemical, vol. 321, 128629, October 2020. [CrossRef]

[32]

T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Selectivity towards H2 gas by flame-made Pt-loaded $WO_3$ sensing films,” Sensors and Actuators B: Chemical, vol. 157, pp. 290-297, April 2011. [CrossRef]