Mobile QR Code QR CODE

References

[1]

Z. Yusupov and M. Almaktar, “Geothermal power generation,” Geothermal energy, IntechOpen, 2021.

[2]

Automotive Electronics Council. (Sep. 2014). AEC-Q100 RevH: Failure Mechanism Based Stress Test Qualification for Integrated Circuits. Accessed: Mar. 31, 2022. [Online]. Available: http://www.aecouncil.com/AECDocu ments.html [CrossRef]

[3]

M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS temperature sensor with a 3s inaccuracy of ±0.1 ℃ from -55℃ to +125℃,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, December 2005. [CrossRef]

[4]

Z. Tang, Y. Fang, X.-P. Yu, Z. Shi, and N. Tan, “A CMOS Temperature Sensor With Versatile Readout Scheme and High Accuracy for Multi-Sensor Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 11, pp. 3821-3829, November 2018. [CrossRef]

[5]

S. Jagtap, S. Rane, U. Mulik, and D. Amalnerkar, “Thick film NTC thermistor for wide range of temperature sensing,” Microelectronics International, vol. 24, no. 2, pp. 7- 13, April 2007. [CrossRef]

[6]

J.-S. Na, W. Shin, B.-C. Kwak, S.-K. Hong, and O.- K. Kwon, “A CMOS-based temperature sensor with subthreshold operation for low-voltage and low-power on-chip thermal monitoring,” Journal of Semiconductor Technology and Science, vol. 17, no. 1, pp. 29–34, February 2017. [CrossRef]

[7]

S.-C. Lee and H. Chiueh, “A 69 mW CMOS smart temperature sensor with an inaccuracy of ±0.8℃ (3s) from -50℃ to 150℃,” Proc. of 2012 IEEE Sensors, IEEE, Taipei, Taiwan, pp. 1-4, 2012 [CrossRef]

[8]

S. Pan, C˛. Gürleyük, M. F. Pimenta, and K. A. A. Makinwa, “10.3 A 0.12 mm$^2$ Wien-bridge temperature sensor with 0.1℃ (3s) inaccuracy from -40℃ to 180℃,” Proc. of 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 184-186, 2019. [CrossRef]

[9]

M. -K. Law, S. Lu, T. Wu, A. Bermak, P. -I. Mak, and R. P. Martins, “A 1.1 mW CMOS Smart Temperature Sensor With an Inaccuracy of ±0.2℃ ( 3s) for Clinical Temperature Monitoring,” IEEE Sensors Journal, vol. 16, no. 8, pp. 2272-2281, April15, 2016. [CrossRef]

[10]

B. Wang and M. -K. Law, “Subranging BJT-Based CMOS Temperature Sensor with a ±0.45℃ inaccuracy (3s) from -50℃ to 180℃ and a resolution-FoM of 7.2 $_p$JㆍK$^2$ at 150℃,” IEEE Journal of Solid-State Circuits, vol. 57, no. 12, pp. 3693-3703, December 2022. [CrossRef]

[11]

N. G. Toth, Z. Tang, T. Someya, S. Pan, and K. A. A. Makinwa, “23.7 A BJT-based temperature sensor with ±0.1℃ (3s) inaccuracy from -55℃ to 125℃ and a 0.85$_p$JㆍK$^2$ resolution FoM using continuous-time readout,” Proc. of 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 358-360, 2023.

[12]

K. Souri and K. Makinwa, “A 40mW CMOS temperature sensor with an inaccuracy of ±0.4℃ (3s) from -55℃ to 200℃,” Proc. of 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, Romania, pp. 221-224, 2013. [CrossRef]

[13]

B. Yousefzadeh and K. A. A. Makinwa, “A BJT-based temperature-to-digital converter with a ±0:25℃ 3 s- inaccuracy from -40℃ to +180℃ using heater-assisted voltage calibration,” IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 369-377, February 2020. [CrossRef]

[14]

M. A. P. Pertijs and J. H. Huijsing, Precision Temperature Sensors in CMOS Technology, Springer, Dordrecht, The Netherlands, 2006.

[15]

J.-H. Boo, K.-I. Cho, H.-J. Kim, J.-G. Lim, Y.-S. Kwak, and S.-H. Lee, “A single-trim switched capacitor CMOS bandgap reference with a 3s inaccuracy of +0:02%, -0:12% for battery-monitoring applications,” IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1197-1206, April 2021. [CrossRef]

[16]

A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, and G. C. M. Meijer, “Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0:25℃ (±3σ) from -70℃ to 130℃,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1840-1848, May 2013. [CrossRef]

[17]

X. Pu, M. Ash, K. Nagaraj, J. Park, S. Vu, and P. Kimelman, “An embedded 65 nm CMOS remote temperature sensor With digital beta correction and series resistance cancellation achieving an inaccuracy of 0:4℃ (3σ) from -40℃ to 130℃,” IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2127-2137, September 2015. [CrossRef]

[18]

B. Yousefzadeh, S. H. Shalmany, and K. A. A. Makinwa, “A BJT-based temperature-to-digital converter with ±60 mK (3σ) inaccuracy from -55℃ to +125℃ in 0.16-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 1044-1052, April 2017. [CrossRef]

[19]

Z. Tang, S. Pan, M. Grubor, and K. A. A. Makinwa, “A sub- 1 V capacitively biased BJT-based temperature sensor with an inaccuracy of ±0:15℃ (3σ) from -55℃ to 125℃,” IEEE Journal of Solid-State Circuits, vol. 58, no. 12, pp. 3433-3441, December 2023. [CrossRef]

[20]

R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Design-oriented estimation of thermal noise in switchedcapacitor circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2358-2368, November 2005. [CrossRef]

[21]

C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, November 1996. [CrossRef]

[22]

J. Márkus, J. Silva, and G. C. Temes, “Theory and applications of incremental 16 converters,” IEEE Transactions on Circuits and Systems I: Regular Paper, vol. 51, no. 4, pp. 678–690, April 2004. [CrossRef]