Mobile QR Code QR CODE

References

1 
Lin L., Jacobs R., Ma T., Chen D., Booske J., Morgan D., 2023, Work function: Fundamentals, measurement, calculation, engineering, and applications, Physical Review Applied, Vol. 19, No. 3DOI
2 
Bhuwalka K. K., Schulze J., Eisele I., 2005, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering, IEEE Transactions on Electron Devices, Vol. 52, No. 5, pp. 909-917DOI
3 
Jain A., Shin Y., Persson K. A., 2016, Computational predictions of energy materials using density functional theory, Nature Reviews Materials, Vol. 1, No. 1, pp. 1-13DOI
4 
Duan C., Liu F., Nandy A., Kulik H. J., 2021, Putting density functional theory to the test in machine-learning-accelerated materials discovery, The Journal of Physical Chemistry Letters, Vol. 12, No. 19, pp. 4628-4637DOI
5 
Tang Q., Zhou Z., Chen Z., 2015, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 5, No. 5, pp. 360-379DOI
6 
Hautier G., Fischer C. C., Jain A., Mueller T., Ceder G., 2011, High-throughput identification of missing ternary oxides via machine learning and DFT, MRS Bulletin, Vol. 36, No. 7, pp. 576-580Google Search
7 
Jain A., Hautier G., Moore C. J., Ong S. P., Fischer C. C., Mueller T., Persson K. A., Ceder G., 2011, A high-throughput infrastructure for density functional theory calculations, Computational Materials Science, Vol. 50, No. 8, pp. 2295-2310DOI
8 
Padama A. A. B., Palmero M. A., Shimizu K., Chookajorn T., Watanabe S., 2025, Machine learning and density functional theory-based analysis of the surface reactivity of high entropy alloys: The case of H atom adsorption on CoCuFeMnNi, Computational Materials Science, Vol. 247DOI
9 
Hamza H., Jarndal A., 2025, Modeling and simulation of AlPN/GaN high electron mobility transistor, Advanced Theory and Simulations, Vol. 8, No. 4DOI
10 
Golec P., Bestelink E., Sporea R. A., Iñiguez B., 2025, Physical compact model for source-gated transistors for DC application, IEEE Transactions on Electron Devices, Vol. 72, No. 3, pp. 952-958DOI
11 
Fu L., Zhu W., Yu B., Zhang Y., Valdes-Sosa P. A., Li C., Ricci L., Frasca M., Minati L., 2025, Modeling and experimental circuit implementation of fractional single-transistor chaotic oscillators, Applied Mathematics and Computation, Vol. 500DOI
12 
Talukdar J., Choudhuri B., Mummaneni K., 2025, Analytical modeling and TCAD simulation of surface potential and drain current for pocket doped negative capacitance field-effect transistor, Physica Scripta, Vol. 100, No. 3DOI
13 
Eom S., Lee S., Yun H., Cho K., Kim S., Baek R., 2025, Machine learning‐driven extraction of hybrid compact models integrating neural networks and Berkeley short‐channel insulated‐gate field‐effect transistor model‐common multigate for multidevice applications, Advanced Intelligent Systems, Vol. 7, No. 5DOI
14 
Bharti , Mittal P., 2025, Analytical modeling of oppositely doped core–shell junctionless nanowire transistor considering fringe capacitance and dual material gate, Advanced Theory and Simulations, Vol. 8, No. 6DOI
15 
Pahwa G., Salahuddin S., Hu C., 2024, An all-region BSIM thin-film transistor model for display and BEOL 3-D integration applications, IEEE Transactions on Electron Devices, Vol. 71, No. 8, pp. 4701-4709DOI
16 
Lin Q., Yang S., R. Yang , Wu H., 2024, Transistor modeling based on LM-BPNN and CG-BPNN for the GaAs pHEMT, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 37, No. 4DOI
17 
Khorram H. G., Sheikhaei S., Touski S. B., Kokabi A., 2024, Field-effect transistor based on MoSi monolayer for digital logic applications, IEEE Transactions on Electron Devices, Vol. 71, No. 1, pp. 7131-7137DOI
18 
Tung C.-T., Salahuddin S., Hu C., 2024, Non-quasi-static modeling of neural network-based transistor compact model for fast transient, AC, and RF simulations, IEEE Electron Device Letters, Vol. 45, No. 7, pp. 1277-1280DOI
19 
Hossain S., 2015, Iridium Modified Silicon (001) Surface, M.S. Thesis, the University of North DakotaGoogle Search
20 
Oguz I. C., Çakır D., Hossain S., Mohottige R., Gülseren O., Öncel N., 2016, On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface, Journal of Applied Physics, Vol. 120, No. 9DOI
21 
Hossain S., Iqbal M. A., Rahman M., 2020, A new approach towards embedded logic in a single device, Proc. of 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), pp. 120-123Google Search
22 
Hossain S., Iqbal M. A., Samant P., Siddiki M. K., Rahman M., 2023, More than a device: Function implementation in a multi-gate junctionless FET structure, Journal of Electronics and Electrical Engineering, pp. 1-11Google Search
23 
Hossain S., 2023, Function Implementation in a Multi-Gate Junctionless FET StructureGoogle Search
24 
Hossain S., Rabbi A. F., 2024, Work function tuning for junctionless transistor high-K gate material using machine learning descriptor engineering, Proc. of the 8th International Conference on Theoretical and Applied Nanoscience and Nanotechnology (TANN 2024)DOI
25 
Mahshook M., Banerjee R., 2025, Beyond diamond: Interpretable machine learning discovery of coherent quantum defect hosts in semiconductors, arXiv preprint arXiv:2506.03844DOI
26 
Bifulco A., Malucelli G., 2025, AI/Machine learning and sol-gel derived hybrid materials: A winning coupling, Molecules, Vol. 30, No. 14, pp. 3043DOI
27 
Özdem S., Orak I. M., 2025, A novel method based on deep learning algorithms for material deformation rate detection, Journal of Intelligent Manufacturing, Vol. 36, No. 5, pp. 3249-3270DOI
28 
Hossain S., Rabbi A. F., 2024, Work function tuning for junctionless transistor high-K gate material using machine learning descriptor engineering, Proc. of the 8th International Conference on Theoretical and Applied Nanoscience and Nanotechnology (TANN 2024)DOI
29 
Jain A., Ong S. P., Hautier G., Richards W. D., Dacek S., Cholia S., 2013, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials, Vol. 1, No. 1DOI
30 
Calderon C. E., Plata J. J., Toher C., Oses C., Levy O., Fornari M., Natan A., 2015, The AFLOW standard for high-throughput materials science calculations, Computational Materials Science, Vol. 108, pp. 233-238DOI
31 
, TCAD Sentaurus, https://www.synopsys.com/manufacturing/tcad.htmlURL