Mobile QR Code QR CODE

REFERENCES

1 
Li Z., Yao Z., Haidry A. A., Plecenik T., Xie L., Sun L., Fatima Q., 2018, Resistive-type hydrogen gas sensor based on TiO2: A review, International Journal of Hydrogen Energy, Vol. 43, pp. 21114-21132DOI
2 
Xue N., Zhang Q., Zhang S., Zong P., Yang F., 2017, Highly sensitive and selective hydrogen gas sensor using the mesoporous SnO2 modified layers, Sensors, Vol. 17, No. 10, pp. 2351DOI
3 
Cai L., Zhu S., Wu G., Jiao F., Li W., Wang X., An Y., Hu J., Sun J., Dong X., Wang J., Lu Q., Jing Q., 2020, Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostructure, International Journal of Hydrogen Energy, Vol. 45, pp. 31327-31340DOI
4 
Simon I., Arndt M., 2002, Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications, Sensors and Actuators A: Physical, Vol. 97-98, pp. 104-108DOI
5 
Gupta A., Pandey S. S., Nayak M., Maity A., Majumder S. B., Bhattacharya S., 2014, Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles, RSC Advances, Vol. 4, No. 15, pp. 7476-7482DOI
6 
Chauhan P. S., Bhattacharya S., 2019, Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review, International Journal of Hydrogen Energy, Vol. 44, No. 47, pp. 26076-26099DOI
7 
Philip A., Kumar A. R., 2022, The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review, Coordination Chemistry Reviews, Vol. 458, pp. 214424DOI
8 
Kang B. S., Ren F., Gila B. P., Abernathy C. R., Pearton S. J., 2004, AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor, Applied Physics Letters, Vol. 84, No. 7, pp. 1123-1125DOI
9 
Phanichphant S., 2014, Semiconductor metal oxides as hydrogen gas sensors, Procedia Engineering, Vol. 87, pp. 795-802DOI
10 
Shi Y., Xu H., T. Liu , Zeb S., Nie Y., Zhao Y., Qin C., Jiang X., 2021, Advanced development of metal oxide nanomaterials for H2 gas sensing applications, Materials Advances, Vol. 2, pp. 1530-1569DOI
11 
Wang D., Chu X. F., Gong M. L., 2006, Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method, Sensors and Actuators B: Chemical, Vol. 117, pp. 183-187DOI
12 
Jang B.-H., Landau O., Choi S.-J., Shin J., Rothschild A., Kim I.-D., 2013, Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature, Sensors and Actuators B: Chemical, Vol. 188, pp. 156-168DOI
13 
Cho N. G., Yang D. J., Jin M.-J., Kim H.-G., Tuller H. L., Kim I.-D., 2011, Selective detection of NO2 using SnO2 nanowire sensors functionalized with catalytic metal nanoparticles, Sensors and Actuators B: Chemical, Vol. 160, pp. 1468-1472DOI
14 
Kou X., Wang C., Ding M., Feng C., Li X., Ma J., Zhang H., Sun Y., G. Lu , 2016, Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties, Sensors and Actuators B: Chemical, Vol. 236, pp. 425-432DOI
15 
Rane A. V., Kanny K., Abitha V. K., Thomas S., 2018, Methods for synthesis of nanoparticles and fabrication of nanocomposites, pp. 121-139DOI
16 
Bognitzki M., Czado W., Frese T., 2001, Nanostructured fibers via electrospinning, Advanced Materials, Vol. 13, No. 1, pp. 70-72DOI
17 
Liu W., Sun J., Xu L., Zhu S., Zhou X., Yang S., Dong B., Bai X., Lu G., Song H., 2019, Understanding the noble metal modifying effect on In2O3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple diseases, Nanoscale Horizons, Vol. 4, pp. 1361-1371DOI
18 
Baek D. H., Kim J., 2017, MoS2 gas sensor functionalized by Pd for the detection of hydrogen, Sensors and Actuators B: Chemical, Vol. 250, pp. 686-691DOI
19 
Pippara R. K., Chauhan P. S., Yadav A., Kishnani V., Gupta A., 2021, Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites, Micro & Nano Engineering, Vol. 12, pp. 100086DOI
20 
Russo P. A., Donato N., Leonardi S. G., Baek S., Conte D. E., Neri G., Pinna N., 2012, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide, Angewandte Chemie International Edition, Vol. 51, pp. 11053-11057DOI
21 
Zhang H., Li Z., Liu L., Xu X., Wang Z., Wang W., Zheng W., Dong B., Wang C., 2010, Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers, Sensors and Actuators B: Chemical, Vol. 147, pp. 111-115DOI
22 
Ling C., Xue Q., Han Z., Lu H., Xia F., Yan Z., Deng L., 2016, Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions, Sensors and Actuators B: Chemical, Vol. 227, pp. 438-447DOI
23 
Cai Z., Park S., 2020, Synthesis of Pd nanoparticle-decorated SnO2 nanowires and determination of the optimum quantity of Pd nanoparticles for highly sensitive and selective hydrogen gas sensor, Sensors and Actuators B: Chemical, Vol. 322, pp. 128651DOI
24 
Zhang Z., Shao C., Li X., Zhang L., 2010, Electrospun nanofibers of ZnO-SnO2 nanocomposite with high photocatalytic activity, Journal of Physical Chemistry C, Vol. 114, pp. 7920-7925DOI
25 
Themlin J.-M., Chtaïb M., Henrard L., Lambin P., Darville J., Gilles J.-M., 1992, Characterization of tin oxides by X-ray-photoemission spectroscopy, Physical Review B, Vol. 46, No. 4, pp. 2460-2466DOI
26 
Luo Y., Zhang C., Zheng B., Geng X., Debliquy M., 2017, Improved hydrogen sensing based on Pd-doped SnO2 nanofibers at low temperature, International Journal of Hydrogen Energy, Vol. 42, pp. 20386-20397DOI
27 
Meng X., Bi M., Xiao Q., Gao W., 2022, Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles, International Journal of Hydrogen Energy, Vol. 47, No. 5, pp. 3157-3169DOI
28 
Gu D., Dey S. K., Majhi P., 2006, Hydrogen sensing properties of Pt-coated SnO2 nanowires, Applied Physics Letters, Vol. 89, pp. 082907DOI
29 
Li F., Gao X., Wang R., Zhang T., Lu G., 2017, High-performance hydrogen sensor based on Pt-SnO2 composite nanofibers, Sensors and Actuators B: Chemical, Vol. 248, pp. 812-819DOI
30 
Kumar A., Mohammadi M. M., Swihart M. T., 2019, Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures, Nanoscale, Vol. 11, pp. 19058-19085DOI
31 
Mohammadi M. M., Kumar A., Liu J., Liu Y., Thundat T., Swihart M. T., 2020, Hydrogen sensing at room temperature using flame-synthesized palladium-decorated crumpled reduced graphene oxide nanocomposites, ACS Sensors, Vol. 5, No. 8, pp. 2344-2350DOI