Mobile QR Code QR CODE

REFERENCES

1 
Kim H., Kim T., Park T., Kim D., Yu Y., Kim H., Park Y., 2025, Accelerating LLMs using an efficient GEMM library and target-aware optimizations on real-world PIM devices, Proc. of CGO ’25: 23rd ACM/IEEE International Symposium on Code Generation and OptimizationDOI
2 
Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Küttler H., Lewis M., Yih W., Tocktäschel T., Riedel S., Kiela D., 2020, Retrieval-augmented generation for knowledge-intensive NLP tasks, Advances in Neural Information Processing Systems (NeurIPS), Vol. 33, pp. 9459-9474DOI
3 
Johnson J., Douze M., Jégou H., 2021, Billion-scale similarity search with gpus, IEEE Transactions on Big Data, Vol. 7, No. 3, pp. 535-547DOI
4 
Jang J.-H., Shin J., 2023, In-depth survey of processing-in-memory architectures for deep neural networks, Journal of Semiconductor Technology and Science, Vol. 23, No. 5, pp. 322-339DOI
5 
Cho S., 2022, Volatile and nonvolatile memory devices for neuromorphic and processing-in-memory applications, Journal of Semiconductor Technology and Science, Vol. 22, No. 1, pp. 30-46DOI
6 
Lee J., Cha M., 2023, Charge trap flash structure with feedback field effect transistor for processing in memory, Journal of Semiconductor Technology and Science, Vol. 23, No. 5, pp. 295-302DOI
7 
Asifuzzaman K., Miniskar N. R., Young A. R., Liu F., Vetter J. S., 2023, A survey on processing-in-memory techniques: Advances and challenges, Memories - Materials, Devices, Circuits and Systems, Vol. 4, pp. 100022DOI
8 
Hu H., Wang W.-C., Chang Y.-H., Lee Y.-C., Lin B.-R., Wang H.-M., 2022, ICE: An intelligent cognition engine with 3D NAND-based in-memory computing for vector similarity search acceleration, Proc. of 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)DOI
9 
Verma V., Stan M. R., 2022, AI-PiM-extending the RISC-V processor with processing-in-memory functional units for AI inference at the edge of IoT, Frontiers in Electronics, Vol. 3DOI
10 
Choi H., Kim G., Shin W., Won J., Kim C., Joo H., An B., Shin G., Yun J. D., 2024, AiMX: Accelerator-in-memory based accelerator for cost-effective large language model inference, Proc. of 2024 IEEE International Electron Devices Meeting (IEDM), pp. 1-4DOI
11 
Kwon Y., Vladimir K., Kim N., Shin W., Won J., Lee M., Joo H., Choi H., Kim G., An B., 2022, System architecture and software stack for GDDR6-AiM, Proc. of 2022 IEEE Hot Chips 34 Symposium (HCS), pp. 1-25DOI
12 
Gómez-Luna J., Guo Y., Brocard S., Legriel J., Cimadomo R., Oliveira G. F., Singh G., Mutlu O., 2022, An experimental evaluation of machine learning training on a real processing-in-memory system, arXiv preprint arXiv:2207.07886DOI
13 
Ortega C., Falevoz Y., Ayrignac R., 2024, PIM-AI: A novel architecture for high-efficiency llm inference, arXiv preprint arXiv:2411.17309DOI
14 
Falevoz Y., Legriel J., 2023, Energy efficiency impact of processing in memory: A comprehensive review of workloads on the upmem architecture, Proc. of European Conference on Parallel Processing, Springer, pp. 155-166DOI
15 
Lee S., Kang S., Lee J., Kim H., Kim E., Seo S., 2021, Hardware architecture and software stack for PIM based on commercial DRAM technology, Proc. of the 48th Annual International Symposium on Computer Architecture (ISCA)DOI
16 
Kwon Y.-C., Lee S. H., Lee J., Kwon S.-H., Ryu J. M., Son J.-P., 2021, 25.4 A 20nm 6GB function-in-memory DRAM, based on HBM2 with a 1.2TFLOPS programmable computing unit using bank-level parallelism, for machine learning applications, Proc. of IEEE International Solid-State Circuits Conference (ISSCC)DOI
17 
Jegou H., Douze M., Schmid C., 2010, Product quantization for nearest neighbor search, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 1, pp. 117-128DOI
18 
Chen J., Gómez-Luna J., Hajj I. E., Guo Y., Mutlu O., 2023, Simplepim: A software framework for productive and efficient processing-in-memory, Proc. of International Conference on Parallel Architectures and Compilation Techniques (PACT)DOI
19 
Noh S. U., Hong J., Lim C., Park S., Kim J., Kim H., Kim Y., Lee J., 2024, PID-Comm: A fast and flexible collective communication framework for commodity processing-in-DIMM devices, Proc. of ACM/IEEE International Symposium on Computer Architecture (ISCA)DOI
20 
Item M., Gómez-Luna J., Guo Y., Oliveira G. F., Sadrosadati M., Mutlu O., 2023, TransPimLib: A library for efficient transcendental functions on processing-in-memory systems, Proc. of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)DOI
21 
Ahn J., Yoo S., Mutlu O., Choi K., 2015, PIM-enabled instructions: A low-overhead, locality-aware processing-in-memory architecture, Proc. of ACM/IEEE Annual International Symposium on Computer Architecture (ISCA), pp. 336-348DOI
22 
Kim C. H., Lee W. J., Paik Y., Kwon K., Kim S. Y., Park I., Kim S. W., 2022, Silent-PIM: Realizing the processing-in-memory computing with standard memory requests, IEEE Transactions on Parallel and Distributed Systems, Vol. 33, No. 2, pp. 251-262DOI
23 
Ryu S., 2024, Resource analysis on FPGA for functional verification of digital SRAM PIM, Journal of Semiconductor Technology and Science, Vol. 24, No. 3, pp. 218-225DOI
24 
Karunamurthy P., Alhady S. S. N., Wahab A. A. A., Othman W. A. F. W., 2022, Integration of Gem5 and Dramsim2 for DDR4 simulation, International Journal of Advanced Trends in Computer Science and Engineering, Vol. 9, No. 1, pp. 698-793DOI
25 
Christ D., Steiner L., Jung M., Wehn N., 2024, PIMSys: A virtual prototype for processing in memory, Proc. of International Symposium on Memory Systems, pp. 26-33DOI