Mobile QR Code QR CODE

References

1 
Sidell F. R., Borak J., 1992, Chemical warfare agents: II. nerve agents, Annals of Emergency Medicine, Vol. 21, No. 7, pp. 865-871DOI
2 
Gupta R. D., Goldsmith M., Ashani Y., Simo Y., Mullokandov G., Bar H., Ben-David M., Leader H., Margalit R., Silman I., Sussman J. L., Tawfik D. S., 2011, Directed evolution of hydrolases for prevention of G-type nerve agent intoxication, Nature Chemical Biology, Vol. 7, pp. 120-125DOI
3 
Mandal D., Banerjee S., 2022, Surface acoustic wave (SAW) sensors: Physics, Materials, and Applications, Sensors, Vol. 22, No. 3DOI
4 
Ordronneau L., Carella A., Pohanka M., Simonato J.-P., 2013, Chromogenic detection of Sarin by discolouring decomplexation of a metal coordination complex, Chemical Communications, Vol. 49, pp. 8946-8948DOI
5 
Rusu A. D., Moleavin I. A., Hurduc N., Hamel M., Rocha L., 2014, Fluorescent polymeric aggregates for selective response to Sarin surrogates, Chemical Communications, Vol. 50, pp. 9965-9968DOI
6 
Dai Z., Guan G., Cheng Z., Xu L., Li T., Liu G., Zhang H., Li Y., Cai W., 2015, Janus gas: Reversible redox transition of Sarin enables its selective detection by an ethanol modified nanoporous SnO2 chemiresistor, Chemical Communications, Vol. 51, pp. 8193-8196DOI
7 
Barba-Bon A., Costero A. M., Gil S., Sancenón F., Martínez-Máñez R., 2014, Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates, Chemical Communications, Vol. 50, pp. 13289-13291DOI
8 
Powroźnik P., Jakubik W., Kaźmierczak-Bałata A., 2015, Detection of organophosphorus (DMMP) vapour using phthalocyanine-palladium bilayer structures, Procedia Engineering, Vol. 120, pp. 368-371DOI
9 
Powroźnik P., Krzywiecki M., Grządziel L., Jakubik W., 2016, Study of sensing mechanisms in nerve agent sensors based on phthalocyanine-palladium structures, Procedia Engineering, Vol. 168, pp. 586-589DOI
10 
Kim Y., Lee S., Choi H. H., Noh J.-S., Lee W., 2010, Detection of a nerve agent simulant using single-walled carbon nanotube networks: Dimethyl-methyl-phosphonate, Nanotechnology, Vol. 21, No. 49DOI
11 
Grammer W., Yngvesson K. S., 1993, Coplanar waveguide transitions to slotline: Design and microprobe characterization, IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, pp. 1653-1658DOI
12 
Yang L., Qin M., Zhang G., Yang J., Yang J., Zhao J., 2023, Progress of sensitive materials in chemiresistive sensors for detecting chemical warfare agent simulants: A review, Reviews in Analytical Chemistry, Vol. 42, No. 1DOI
13 
Gugliandolo G., Naishadham K., Crupi G., Campobello G., Donato N., 2022, Microwave transducers for gas sensing: A challenging and promising new frontier, IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 3, pp. 42-51DOI
14 
Wen C. P., 1969, Coplanar waveguide, a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications, Proc. of the 1969 G-MTT International Microwave Symposium, pp. 110-115DOI
15 
Pozar D. M., 2011, Microwave Engineering, pp. 192Google Search
16 
Edwards T. C., Steer M. B., 2000, Foundations of Interconnect and Microstrip DesignGoogle Search
17 
dos Santos K. S., Cavalcanti G. O., Azevedo A., Silva C. P. do N., de Melo M. T., Llamas-Garro I., Fontana E., 2023, Hybrid microstrip device for hydrogen detection at microwave frequencies, IEEE Sensors Journal, Vol. 23, No. 7, pp. 6810-6821DOI
18 
Ghione G., Naldi C. U., 1987, Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling, IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 3, pp. 260-267DOI
19 
Silva C. P. do N., Araujo J. A. I., Coutinho M. S., de Oliveira M. R. T., Llamas-Garro I., de Melo M. T., 2021, Multi-band microwave sensor based on Hilbert's fractal for dielectric solid material characterization, Journal of Electromagnetic Waves and Applications, Vol. 35, No. 7, pp. 848-860DOI
20 
Samant H., Jha A. K., Ansari M. A. H., Akhtar M. J., 2015, Design of CPW fed IDC resonator for non invasive testing of chemical solvents, Proc. of the 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), pp. 1-4DOI
21 
Tiwari N. K., Singh S. P., M. J. Akhtar , 2017, Coplanar waveguide based planar RF sensor for the detection of adulteration in oils, Proc. of the 2017 IEEE Applied Electromagnetics Conference (AEMC), pp. 1-2DOI
22 
Eyebe G. A., Bideau B., Loranger E., Domingue F., 2021, Printed microwave frequency humidity sensor operating with phase shifting scheme, IEEE Sensors Journal, Vol. 21, No. 3, pp. 2854-2863DOI
23 
Rana L., Gupta R., Tomar M., Gupta V., 2017, ZnO/ST-quartz SAW resonator: An efficient NO2 gas sensor, Sensors and Actuators B: Chemical, Vol. 252, pp. 840-845DOI
24 
Al-Salman H. S., Abdullah M. J., 2013, Hydrogen gas sensing based on ZnO nanostructure prepared by RF-sputtering on quartz and PET substrates, Sensors and Actuators B: Chemical, Vol. 181, pp. 259-266DOI
25 
Mustafa H. A., Jameel D. A., 2021, Modeling and the main stages of spin coating process: A review, Journal of Applied Science and Technology Trends, Vol. 2, No. 2, pp. 119-123DOI