Mobile QR Code QR CODE

REFERENCES

1 
Mendoza-Cardenas F., Aparcana-Tasayco A. J., Leon-Aguilar R. S., Quiroz-Arroyo J. L., 2022, Cryptography for privacy in a resource-constrained IoT: A systematic literature review, IEIE Transactions on Smart Processing and Computing, Vol. 11, No. 5, pp. 351-360DOI
2 
Yoon D.-H., Seo H., Lee J., Kim Y., 2024, Online electric vehicle charging strategy in residential areas with limited power supply, IEEE Transactions on Smart Grid, Vol. 15, No. 3, pp. 3141-3151DOI
3 
Ryu S., 2022, Review and analysis of variable bit-precision MAC microarchitectures for energy-efficient AI computation, Journal of Semiconductor Technology and Science, Vol. 22, No. 5, pp. 353-360DOI
4 
Venkataramani S., Chakradhar S. T., Roy K., Raghunathan A., 2015, Approximate computing and the quest for computing efficiency, Proc. of 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6DOI
5 
Xu Q., Mytkowicz T., Kim N. S., 2016, Approximate computing: A survey, IEEE Design & Test, Vol. 33, No. 1, pp. 8-22DOI
6 
Kwak M., Kim J., Kim Y., 2023, TorchAxf: Enabling rapid simulation of approximate DNN models using GPU-based floating-point computing framework, Proc. of 2023 31st International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 1-8DOI
7 
Kwak M., Kim J., Kim Y., 2024, A comprehensive exploration of approximate DNN models with a novel floating-point simulation framework, Performance Evaluation, Vol. 165, pp. 102423DOI
8 
Seo H., Kim Y., 2024, Enabling quantum computer simulation under minimal precision floating-point using irrational value decomposition, Proc. of 2024 32nd International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 1-8DOI
9 
Hwang S., Seo H., Kim Y., 2025, Can less accurate be more accurate? Surpassing exact multiplier with approximate design on NISQ quantum computers, Proc. of the 40th ACM/SIGAPP Symposium on Applied Computing, pp. 590-591DOI
10 
Kwak M., Lee S., Kim Y., 2025, Design of approximate floating-point arithmetic units using hardware-efficient rounding schemes, IEEE Embedded Systems Letters, pp. 1-4DOI
11 
Seo H., Seok H., Lee J., Han Y., Kim Y., 2023, Design of an approximate adder based on modified full adder and nonzero truncation for machine learning, Journal of Semiconductor Technology and Science, Vol. 23, No. 2, pp. 138-148DOI
12 
Seo H., Kim Y., 2023, A low latency approximate adder design based on dual sub-adders with error recovery, IEEE Transactions on Emerging Topics in Computing, Vol. 11, No. 3, pp. 811-816DOI
13 
Hwang S., Seok H., Kim Y., 2024, Design of an approximate 4-2 compressor with error recovery for efficient approximate multiplication, Journal of Semiconductor Technology and Science, Vol. 24, No. 4, pp. 305-315DOI
14 
Gu J., Kim Y., 2022, Design and analysis of approximate 4-c Compressor for efficient multiplication, IEIE Transactions on Smart Processing and Computing, Vol. 11, No. 3, pp. 162-168DOI
15 
Strollo A. G. M., Napoli E., Caro D. De, Petra N., Meo G. D., 2020, Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 9, pp. 3021-3034DOI
16 
Momeni A., Han J., Montuschi P., Lombardi F., 2015, Design and analysis of approximate compressors for multiplication, IEEE Transactions on Computers, Vol. 64, No. 4, pp. 984-994DOI
17 
Akbari O., Kamal M., Afzali-Kusha A., Pedram M., 2017, Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, No. 4, pp. 1352-1361DOI
18 
Venkatachalam S., Ko S.-B., 2017, Design of power and area efficient approximate multipliers, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, No. 5, pp. 1782-1786DOI
19 
Ahmadinejad M., Moaiyeri M. H., Sabetzadeh F., 2019, Energy and area efficient imprecise compressors for approximate multiplication at nanoscale, AEU - International Journal of Electronics and Communications, Vol. 110, pp. 152859DOI
20 
Sabetzadeh F., Moaiyeri M. H., Ahmadinejad M., 2019, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 11, pp. 4200-4208DOI
21 
Pei H., Yi X., Zhou H., He Y., 2021, Design of ultra-low power consumption approximate 4-2 compressors based on the compensation characteristic, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 1, pp. 461-465DOI
22 
Zhang M., Nishizawa S., Kimura S., 2023, Area efficient approximate 4-2 compressor and probability-based error adjustment for approximate multiplier, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 5, pp. 1714-1718DOI
23 
Esposito D., Strollo A. G. M., Napoli E., Caro D. De, Petra N., 2018, Approximate multipliers based on new approximate compressors, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 12, pp. 4169-4182DOI
24 
Hwang S., Kwon K.-W., Kim Y., 2025, Design of a hardware-efficient approximate 4-2 compressor for multiplications in image processing, IEEE Embedded Systems Letters, Vol. 17, No. 4, pp. 226-229DOI
25 
Chung Y., Kim Y., 2021, Comparison of approximate computing with sobel edge detection, IEIE Transactions on Smart Processing and Computing, Vol. 10, No. 4, pp. 355-361DOI
26 
Joe H., Kim Y., 2020, Compact and power-efficient sobel edge detection with fully connected cube-network-based stochastic computing, Journal of Semiconductor Technology and Science, Vol. 20, No. 5, pp. 436-446DOI
27 
Danopoulos D., Zervakis G., Siozios K., Soudris D., Henkel J., 2023, AdaPT: Fast emulation of approximate DNN accelerators in PyTorch, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 42, No. 6, pp. 2074-2078DOI