Mobile QR Code QR CODE

References

1 
B. Hoefflinger, ``IRDS—International roadmap for devices and systems, rebooting computing, S3S,'' in NANO-CHIPS 2030: On-Chip AI for an Efficient Data-Driven World, pp. 9--17, 2020.DOI
2 
S. Biswas and R. D. Blanton, ``Improving the accuracy of test compaction through adaptive test update,'' in Proceedings of the 2008 IEEE International Test Conference (ITC), 2008.DOI
3 
E. Yilmaz, S. Ozev, and K. M. Butler, ``Adaptive test flow for mixed-signal/RF circuits using learned information from device under test,'' in Proceedings of the 2010 IEEE International Test Conference (ITC), 2010.DOI
4 
K. R. Gotkhindikar, A Die-Level Adaptive Test Scheme for Real-Time Test Reordering and Elimination, Portland State University, 2012.URL
5 
L. Huang and T. Song, ``VLSI test through an improved LDA classification algorithm for test cost reduction,'' Microelectronics Journal, vol. 125, 105461, 2022.DOI
6 
F. B. Shaik and M. Kashyap, ``Classification algorithm for VLSI test cost reduction,'' in Proceedings of the 2024 28th International Symposium on VLSI Design and Test (VDAT), 2024.DOI
7 
C. Fang, Q. Huang, and R. D. Blanton, ``Adaptive test pattern reordering for diagnosis using k-nearest neighbors,'' in Proceedings of the 2020 IEEE International Test Conference in Asia (ITC-Asia), 2020.DOI
8 
M. Liu and K. Chakrabarty, ``Adaptive methods for machine-learning-based testing of integrated circuits and boards,'' in Proceedings of the 2021 IEEE International Test Conference (ITC), 2021.DOI
9 
T. Song, H. Liang, Z. Huang, T. Ni, and Y. Sun, ``Chip test pattern reordering method using adaptive test to reduce cost for testing of ICs,'' IEICE Electronics Express, vol. 18, no. 2, 20200420, 2021.DOI
10 
T. Song, Z. Huang, L. Zhang, Q. Hong, Z. Yang, and M. Krstic, ``Test cost reduction for VLSI adaptive test with k-nearest neighbor classification algorithm,'' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 7, pp. 3508--3512, 2024.DOI
11 
R. C. Gonzalez, Digital Image Processing, Pearson Education India, 2009.URL
12 
K. Simonyan and A. Zisserman, ``Very deep convolutional networks for large-scale image recognition,'' arXiv preprint arXiv:1409.1556, 2014.DOI
13 
K. He, X. Zhang, S. Ren, and J. Sun, ``Deep residual learning for image recognition,'' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 770--778, June 2016.DOI
14 
A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, ``Searching for MobileNetV3,'' in Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, pp. 1314--1324, October 2019.DOI
15 
Y. Bengio, A. Courville, and P. Vincent, ``Representation learning: A review and new perspectives,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798--1828, August 2013.DOI
16 
S. Thakar, On the Generation of Test Patterns for Combinational Circuits, Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1993.URL
17 
H. K. Lee and D. S. Ha, ``An efficient, forward fault simulation algorithm based on the parallel pattern single fault propagation,'' in Proceedings of the IEEE International Test Conference, Nashville, TN, USA, pp. 946--955, September 1991.DOI
18 
D. P. Kingma and J. Ba, ``Adam: A method for stochastic optimization,'' arXiv preprint arXiv:1412.6980, December 2014.DOI