Mobile QR Code QR CODE

References

1 
Y. K. Fukai, K. Kurishima, N. Kashio, M. Ida, S. Yamahata, and T. Enoki, ``Emitter-metal-related degradation in InP-based HBTs operating at high current density and its suppression by refractory metal,'' Microelectronics Reliability, vol. 49, no. 4, pp. 357-364, Apr. 2009.DOI
2 
Y. K. Koh, Y. W. Kim, and M. Kim, ``Performance analysis of custom dual-finger 250 nm InP HBT devices for implementation of 255 GHz amplifiers,'' Electronics, vol. 11, no. 16, p. 2614, Aug. 2022.DOI
3 
V. Radisic, D. W. Scott, A. Cavus, and C. Monier, ``220-GHz high-efficiency InP HBT power amplifiers,'' IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3001-3005, Dec. 2014.DOI
4 
V. Radisic, D. Scott, S. Wang, A. Cavus, A. Gutierrez-Aitken, and W. R. Deal, ``235 GHz amplifier using 150 nm InP HBT high-power-density transistor,'' IEEE Microwave and Wireless Components Letters, vol. 21, no. 6, pp. 335-337, Jun. 2011.DOI
5 
S. Yamanaka, K. Sano, and K. Murata, ``A 20 Gs/s track-and-hold amplifier in InP HBT technology,'' IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2334-2339, Sep. 2010.DOI
6 
A. Alizadeh, P. V. Rowell, Z. Griffith, and M. J. W. Rodwell, ``A 78 mW 220 GHz power amplifier with peak 18.4% PAE in 250 nm InP HBT technology,'' IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 1, pp. 1-8, Jan. 2024.DOI
7 
L. Zhang, V. Iyer, J. R. Sheth, and M. J. W. Rodwell, ``F-band distributed active transformer power amplifier achieving 12 Gb/s in InP 130 nm HBT,'' IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 3, pp. 1696-1705, Mar. 2023.DOI
8 
S. Yoon, I. Lee, M. Urteaga, M. Kim, and S. Jeon, ``A fully integrated 40-222 GHz InP HBT distributed amplifier,'' IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 460-462, Jul. 2014.DOI
9 
J. Kim, S. Jeon, M. Kim, M. Urteaga, and J. Jeong, ``H-band power amplifier integrated circuits using 250 nm InP HBT technology,'' IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 2, pp. 215-222, Mar. 2015.DOI
10 
V. Iyer, J. Sheth, L. Zhang, and M. J. W. Rodwell, ``A 15.3 dBm, 18.3% PAE F-band power amplifier in 130 nm InP HBT with modulation measurements,'' IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 547-550, May 2023.DOI
11 
A. Alizadeh, U. Soylu, N. Sharma, and M. J. W. Rodwell, ``D-band adaptively biased 16-way-combined half-watt power amplifier in 250 nm InP HBT,'' IEEE Transactions on Microwave Theory and Techniques, vol. 73, no. 1, pp. 1-8, Jan. 2025.DOI
12 
P. Shirmohammadi and S. M. Bowers, ``A wideband 2.18-13.51 GHz ultra-low additive phase-noise power amplifier in InP 250 nm HBT,'' Proc. of the 2024 IEEE Radio and Wireless Symposium (RWS), pp. 16-18, Jan. 2024.DOI
13 
V. Chauhan, N. Collaert, and P. Wambacq, ``A 120-140 GHz LNA in 250 nm InP HBT,'' IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, pp. 1315-1318, Nov. 2022.DOI
14 
P. Sakalas, M. Schroter, and H. Zirath, ``mm-wave noise modeling in advanced SiGe and InP HBTs,'' Journal of Computational Electronics, vol. 14, no. 1, pp. 62-71, Mar. 2015.DOI
15 
H. Son, J. Yoo, D. Kim, and M. J. W. Rodwell, ``A 700 GHz integrated signal source based on 130 nm InP HBT technology,'' IEEE Transactions on Terahertz Science and Technology, vol. 13, no. 6, pp. 654-658, Nov. 2023.DOI
16 
T. Jyo, M. Nagatani, H. Wakita, and K. Okada, ``DC-to-150 GHz bandwidth InP HBT mixer module with upper-sideband gain-enhancing function,'' IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 12, pp. 1-8, Dec. 2024.DOI
17 
S. Veni, P. Andreani, M. Caruso, M. Tiebout, and A. Bevilacqua, ``Analysis and design of a 17 GHz all-npn push-pull class-C VCO,'' IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2345-2355, Sep. 2020.DOI
18 
J. Jeong, J. Choi, J. Kim, and W. Choe, ``H-band InP HBT frequency tripler using the triple-push technique,'' Electronics, vol. 9, no. 12, p. 2081, Dec. 2020.DOI
19 
U. Soylu, A. Alizadeh, M. Seo, and M. J. W. Rodwell, ``280 GHz frequency multiplier chains in 250 nm InP HBT technology,'' IEEE Journal of Solid-State Circuits, vol. 58, no. 9, pp. 2421-2429, Sep. 2023.DOI
20 
A. Zhang and J. Gao, ``A new method for determination of pad capacitances for GaAs HBTs based on scalable small-signal equivalent circuit model,'' Solid-State Electronics, vol. 150, pp. 45-50, Dec. 2018.DOI
21 
K. Cao, A. Zhang, and J. Gao, ``Sensitivity analysis and uncertainty estimation in small-signal modeling for InP HBT (invited paper),'' International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 34, no. 5, Aug. 2021.DOI
22 
A. Zhang and J. Gao, ``An improved nonlinear model for millimeter-wave InP HBT including DC/AC dispersion effects,'' IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 465-468, May 2021.DOI
23 
A. Zhang and J. Gao, ``An improved small-signal model of InP HBT for millimeter-wave applications,'' Microwave and Optical Technology Letters, vol. 63, no. 8, pp. 2160-2164, Aug. 2021.DOI
24 
X. Su, S. Mao, Y. Wang, and J. Gao, ``A parameter extraction method for InP HBT small-signal model considering emitter-collector laminated capacitance effect,'' Microwave and Optical Technology Letters, vol. 66, no. 8, e34285, Aug. 2024.DOI
25 
A. Kanitkar, R. Doerner, T. K. Johansen, and J. Gao, ``Influence of on-wafer parasitic effects on Mason's gain of down-scaled InP HBTs,'' Proc. of the 2024 54th European Microwave Conference (EuMC), pp. 252-255, Sep. 2024.DOI
26 
Y. Wang, W. Ding, Y. Su, and J. Gao, ``An electromagnetic-simulation-assisted small-signal modeling method for InP double-heterojunction bipolar transistors,'' Chinese Physics B, vol. 31, no. 6, 068502, Jun. 2022.DOI
27 
P. Sakalas, M. Schroter, and H. Zirath, ``mm-wave noise modeling in advanced SiGe and InP HBTs,'' Journal of Computational Electronics, vol. 14, no. 1, pp. 62-71, Mar. 2015.DOI
28 
L. Cheng, H. Lu, M. Xia, and J. Gao, ``An augmented small-signal model of InP HBT with its analytical-based parameter extraction technique,'' Microelectronics Journal, vol. 121, 105366, Nov. 2022.DOI
29 
A. Khusro, S. Husain, M. S. Hashmi, A. Q. Ansari, and S. Arzykulov, ``A generic and efficient globalized kernel mapping-based small-signal behavioral modeling for GaN HEMT,'' IEEE Access, vol. 8, pp. 195046-195061, 2020.DOI
30 
S. Wang, J. Zhang, M. Liu, B. Liu, J. Wang, and S. Yang, ``Large-signal behavior modeling of GaN P-HEMT based on GA-ELM neural network,'' Circuits, Systems, and Signal Processing, vol. 41, no. 4, pp. 1834-1847, Apr. 2022.DOI
31 
A. Jarndal, S. Husain, and M. Hashmi, ``On temperature-dependent small-signal modelling of GaN HEMTs using artificial neural networks and support vector regression,'' IET Microwaves, Antennas & Propagation, vol. 15, no. 8, pp. 937-953, Jul. 2021.DOI
32 
J. Dong, Y. Su, B. Mei, and J. Gao, ``Small-signal behavioral-level modeling of InP HBT based on SO-BP neural network,'' Solid-State Electronics, vol. 209, 108784, Oct. 2023.DOI
33 
M. Açıkkar and Y. Altunkol, ``A novel hybrid PSO- and GS-based hyperparameter optimization algorithm for support vector regression,'' Neural Computing and Applications, vol. 35, no. 27, pp. 19961-19977, Dec. 2023.DOI
34 
C. Peng, Z. Che, T. W. Liao, and J. Gao, ``Prediction using multi-objective slime mould algorithm optimized support vector regression model,'' Applied Soft Computing, vol. 145, article 110580, Nov. 2023.DOI
35 
R. G. Brereton and G. R. Lloyd, ``Support vector machines for classification and regression,'' The Analyst, vol. 135, no. 2, pp. 230-267, Feb. 2010.DOI
36 
C. Jung, H. Kim, S. Park, and J. Lee, ``Counter-rotating hoop stabilizer and SVR control for two-wheel vehicle applications,'' IEEE Access, vol. 11, pp. 14436-14447, Feb. 2023.DOI
37 
G. Xu and X. Wang, ``Support vector regression optimized by black widow optimization algorithm combining with feature selection by MARS for mining blast vibration prediction,'' Measurement, vol. 218, 113106, Oct. 2023.DOI
38 
Y. Shi, Q. Li, X. Meng, T. Zhang, and J. Shi, ``On time-series InSAR by SA-SVR algorithm: prediction and analysis of mining subsidence,'' Journal of Sensors, vol. 2020, pp. 1-17, Nov. 2020.DOI
39 
Y. Meng, X. Zhang, and X. Zhang, ``Identification modeling of ship nonlinear motion based on nonlinear innovation,'' Ocean Engineering, vol. 268, article 113471, Jan. 2023.DOI
40 
M. Geng, J. Cai, C. Yu, J. Su, and J. Liu, ``Piecewise small-signal behavioral model for GaN HEMTs based on support vector regression,'' Proc. of the 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Hangzhou, China, pp. 1-3, Dec. 2020.DOI
41 
M. Geng, J. Cai, C. Yu, J. Su, and J. Liu, ``Modified small-signal behavioral model for GaN HEMTs based on support vector regression,'' International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, no. 9, Sep. 2021.DOI
42 
D. Liu, W. Zhang, Y. Tang, and H. Li, ``Evolving support vector regression based on improved grey wolf optimization for predicting settlement during construction of high-filled roadbed,'' Transportation Geotechnics, vol. 45, 101233, Feb. 2024.DOI
43 
S. Mirjalili, S. M. Mirjalili, and A. Lewis, ``Grey wolf optimizer,'' Advances in Engineering Software, vol. 69, pp. 46-61, Mar. 2014.DOI
44 
G. Jabbour, A. Nolin-Lapalme, O. Tastet, and M. Després, ``Prediction of incident atrial fibrillation using deep learning, clinical models, and polygenic scores,'' European Heart Journal, vol. 45, no. 46, pp. 4920-4934, Dec. 2024.DOI
45 
M. Cho, M. Franot, O. J. Lee, and H. Kim, ``A neural compact model based on transfer learning for organic FETs with Gaussian disorder,'' Journal of Materials Chemistry C, vol. 12, no. 41, pp. 16691-16700, Nov. 2024.DOI
46 
X. Du, M. Helaoui, A. Jarndal, and F. M. Ghannouchi, ``ANN-based large-signal model of AlGaN/GaN HEMTs with accurate buffer-related trapping effects characterization,'' IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3090-3099, Jul. 2020.DOI