Mobile QR Code QR CODE

References

[1]

S. Ryu and J.-J. Kim, “High-performance sparsity-aware NPU with reconfigurable comparator-multiplier architecture,” Journal of Semiconductor Technology and Science, vol. 24, no. 6, pp. 572-577, 2024. [CrossRef]

[2]

H.-T. Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp. 37-46, 1982. [CrossRef]

[3]

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor processing unit,” Proc. of 44th Annual International Symposium on Computer Architecture (ISCA), pp. 1-12, 2017. [CrossRef]

[4]

F. Yu, Z. Qin, C. Liu, D. Wang, and X. Chen, “REIN the RobuTS: Robust DNN-based image recognition in autonomous driving systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 6, pp. 1258-1271, 2020. [CrossRef]

[5]

H. A. Glory, C. Vigneswaran, S. S. Jagtap, R. Shruthi, G. Hariharan, and V. S. S. Sriram, “AHW-BGOA-DNN: A novel deep learning model for epileptic seizure detection,” Neural Computing and Applications, vol. 33, pp. 6065- 6093, 2021. [CrossRef]

[6]

S. J. Yoon, T. Talluri, A. Angani, H. T. Chung, and K. J. Shin, “Development of battery management system with PCM using neural network based aging algorithm for electric vehicle,” IEIE Transactions on Smart Processing and Computing, vol. 14, no. 2, pp. 280-296, 2025. [CrossRef]

[7]

S. S. Sahoo, A. Kumar, and B. Veeravalli, “Design and evaluation of reliability-oriented task re-mapping in MPSoCs using time-series analysis of intermittent faults,” Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 798-803, 2016. [CrossRef]

[8]

S. Borkar, “Design perspectives on 22nm CMOS and beyond,” Proc. of 46th Annual Design Automation Conference (DAC), pp. 93-94, 2009. [CrossRef]

[9]

C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro, vol. 23, no. 4, pp. 14-19, 2003. [CrossRef]

[10]

H. Nan and K. Choi, “High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1445-1457, 2012. [CrossRef]

[11]

J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and N.Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt and future trends,” Proc. of 50th Annual Design Automation Conference (DAC), pp. 1- 10, 2013. [CrossRef]

[12]

H. Lee, H.-J. Lee, and H. Kim, “A read disturbance tolerant phase change memory system for CNN inference workloads,” Journal of Semiconductor Technology and Science, vol. 22, no. 4, pp. 216-223, 2022. [CrossRef]

[13]

M. Pandey and A. Islam, “Radiation tolerant by design 12- transistor static random access memory,” Journal of Semiconductor Technology and Science, vol. 24, no. 5, pp.410- 423, 2024. [CrossRef]

[14]

J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based accelerators for deep neural network execution,” IEEE Design & Test, vol. 36, no. 5, pp. 44-53, 2019. [CrossRef]

[15]

M. A. Hanif and M. Shafique, “Salvagednn: Salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2164, 20190164, 2020. [CrossRef]

[16]

K. Cho, I. Lee, H. Lim, and S. Kang, “Efficient systolicarray redundancy architecture for offline/online repair,” Electronics, vol. 9, no. 2, 338, 2020. [CrossRef]

[17]

L.-C. Chu and B. W. Wah, “Fault tolerant neural networks with hybrid redundancy,” Proc. of IJCNN International Joint Conference on Neural Networks, pp. 639-649, 1990. [CrossRef]

[18]

H. Lee, J. Park, and S. Kang, “An area-efficient systolic array redundancy architecture for reliable AI accelerator,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 32, no. 10, pp. 1950-1954, 2024. [CrossRef]

[19]

L. Deng, “The MNIST database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012. [CrossRef]

[20]

J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator,” Proc. of IEEE 36th VLSI Test Symposium (VTS), pp. 1-6, 2018. [CrossRef]