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Abstract—The research investigates the electrical 

effect of Work Function Variation (WFV) in Tunnel 

Field-Effect Transistors (TFETs), with Titanium 

Nitride (TiN) gate as a common Metal Gate material. 

Employing advanced Machine Learning (ML) 

techniques, this study seeks to establish causal 

relationships among various parameters, optimize 

ML models, and predict exceptional scenarios. 

Through an in-depth analysis of diverse data, the 

study uncovers insights into TFET’s performance 

variations. The ML model was optimized using the 

elimination method, checking each R2 value. After 

discovering the relevant output parameters (e.g., 

turn-on voltage (Von), threshold voltage (Vth)), it was 

observed that WFV at particular gate regions heavily 

affects current variation. Furthermore, ML 

demonstrated the ability to predict output parameters 

for exceptional cases, not present in the training data, 

such as gates composed of the 4.4-eV grain, which 

exhibited a high R2 value (0.9927).    

 

Index Terms—Machine learning, TFET, tunneling, 

band to band tunneling  

I. INTRODUCTION 

Recently, Tunnel Field-Effect Transistors (TFETs) 

have been studied as promising alternatives to metal-

oxide-semiconductor field-effect transistors (MOSFETs) 

[1-6], particularly for very low-power application. Based 

on carrier injection through band-to-band tunneling 

(BTBT), significant progress has been made in achieving 

a subthreshold swing (SS) of less than 60 mV/dec at 

room temperature (RT) and minimizing low-level off-

state current (Ioff). Nevertheless, in contrast to MOSFETs, 

TFETs face a challenging issue with low on-state current 

(Ion). To address this, a high-κ / metal gate (HKMG) 

materials have been adopted instead of polysilicon gate. 

The HKMG, capable of reducing gate leakage and 

ensuring high channel controllability, has shown promise 

in improving TFET performance [7-10].  

Despite advancements in Ion characteristics, Titanium 

Nitride (TiN), a common HKMG material, introduces 

work function variation (WFV). Sputtered TiN tends to 

crystallize predominantly in <200> (60%) and <111> 

(40%), corresponding to WFs 4.6 eV and 4.4 eV 

respectively. This non-uniformity in metal gates 

contributes to WFV, influencing TFET current variations 

[11-13].  

 

Table 1. Parameters of structure 

Parameters Value 

Source doping concentration (Ns) 

Drain doping concentration (ND) 
Body doping concentration (NB) 

Gate work-function 

Channel length (Lch) 

Channel diameter (dch) 

Average metal grain size 

Gate oxide thickness (Tox) 
Drain Voltage (VD) 

1020 cm-3
 (p-type) 

1020 cm-3 (n-type) 
1018 cm-3 (p-type) 

Variable 

20 nm 

20 nm 

5 × 5 nm2 

1 nm 
1 V 
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Therefore, when implementing the TFETs into real 

complementary metal-oxide-semiconductor (CMOS) 

circuits, it is essential to examine electrical performance 

variations in relation to WFV. However, studies 

addressing this issue have been limited. Some 

researchers have proposed nanowire TFETs as the gate of 

nanowire TFET effectively reduces WFV by minimizing 

the affected channel area [14-16]. Despite efforts to 

improve this aspect, WFV still persists. Consequently, 

identifying the primary cause has become crucial for 

reducing or eliminating WFV [17]. 

The primary objective of this study is to establish 

causal relationships using a machine learning (ML) 

approach [18-20]. ML facilitates a comprehensive 

analysis of TFETs even in the absence of complete WFV 

data samples. It allows for predictions by adjusting 

output parameters and constructing a model that captures 

variations in electrical operations associated with WFV, 

combining the variation of current.  

ML allows to identify the cause with a limited dataset. 

However, once relevant parameters are identified, ML 

models need optimization by pinpointing exceptional 

cases that were not part of the training data. Models, 

trained on less data tend to exhibit low R2 value for 

parameters with less relevance. Therefore, it was 

necessary to reduce sensitivity to identify parameters that 

have a direct impact.  

Transistor samples have been verified using 

technology computer-aided design (TCAD) and 

simulations were conducted using Synopsys Sentauraus 

[20, 21]. With relevant parameters, ML predicts 

exceptional situations by different WF in each area. In 

Section 2, we delve into the valuable output parameters 

(e.g., SS, Threshold voltage (Vth), minimum current (Imin), 

turn-on voltage (Von)) influenced by WFV. Section 3 

outlines the most relevant input parameter identified by 

ML. Subsequently, in Section 4, the ML model is 

constructed using data highly dependent on Drain 

Voltage (Vd). Finally, Section 5 presents predictions for 

exceptional situations. 

II. DEVICE DESIGN AND METHODOLOGY 

In Fig. 1(a), a bird’s eye view of a nanowire TFET is 

presented. The simulation, conducted using TCAD, 

features a gate oxide thickness (Tox) of 1 nm with SiO2. 

 

Fig. 1. (a) Bird’s eye view of nanowire TFET; (b) Structure having random WF on gate; (c) Y-axis cross section and divided gate 

area; (d) Z-axis cross section and divided gate area. 
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Arsenic and boron are used as the dopant atoms for n-

type and p-type doping, respectively. The structure of the 

TFET is p-i-n, with a TiN gate and a channel length of 20 

nm. All simulations are performed at RT and the design 

parameters are summarized in Table 1. Fig. 1(b) displays 

a bird’s eye view of a WF randomized model, while Fig. 

1(c) illustrates the Y-axis cross-section. The grain size of 

TiN is assumed to be an identical, forming a 5 × 5 nm2 of 

square shape [22].  

Fig. 1(d) shows Z-axis view, where the gate covering 

channel is divided into 8 areas that contact the oxide part. 

Given the 5 × 5 nm² square shape of the TiN grain, the 

gate area is further divided into 32 units. WFV for each 

gate area is randomly assigned, taking into account these 

probabilities. 

A thousand structures were generated for ML, with 32 

WF parameters extracted from each grain near the gate. 

Additionally, 16 parameters, including conduction band 

and valance band electron volt values at Vg = 0.5 V, Vg 

=1.5 V, were employed to describe the WFV profile in 

nanowire TFET in Fig. 2(a). The parameter mark points 

contact with the dotted line on the graph (0.025, 0.075, 

0.125, 0.175 μm). In total, 48 parameters were used for 

input to train the ML model.  

For the ouput, four parameters (SS, Vth, Ioff, Von) were 

extracted from the Id-Vg curve in Fig. 2(b). This curve 

illustates current’s variation with gate voltage. Imin, the 

minimum current flowing through the device, is 

measured at the lowest value of drain current, marked by 

green circle. SS, the subthreshold swing, represents the 

slope with increasing current and is measured at the point 

where the current increases 100 times from Imin, indicated 

 

Fig. 2. (a) Energy band diagram at Vg = 0.5 V and Vg = 1.5 V; (b) Id-Vg curve at Vd = 1.0 V; (c) Summary of ML model; (d) 

Visualization of ML algorithm. 
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by the purple circle. Von is the gate voltage value defining 

the on-state, measured when the drain current reaches 10-15 

A/μm marked on the blue line. Vth, the voltage at which 

the device operates, is measured when the drain current 

reaches 10-9 A/μm indicated on the red line. Its 

distribution follows a Gaussian distribution due to 

randomized grain. 

To design an ML algorithm and enable predictions, the 

process followed the four steps, as illustrated in Fig. 2(c): 

Step 1: Split the data into training, testing, and validation 

sets. 

Step 2: Construct an ML algorithm by training it with the 

designated data. 

Step 3: Monitor the epoch and loss until the weights are 

optimized. 

Step 4: Adjust or refine the neural network architecture 

as needed and deploy it accordingly. 

 

Following the outlined procedure, thousands of data 

points were divided into the ratio of 8:1:1 for training, 

testing, and validation. The built-in ML algorithm 

utilized a dense layer structure of 48 - 32 - 16 - 4 [23]. 

MinMaxScaler was employed to normalize parameters, 

ensuring consistency with the formula (i.e., (X - Xmin) / 

(Xmax - Xmin)). Categorical Cross-entropy served as the 

loss function for each dense layer in Fig. 2(d), while the 

Adaptive Moment Estimation (ADAM) optimizer was 

chosen for accurate error correction, with a learning rate 

(LR) set to 0.001 [24]. Fig. 3(a) depicts the loss of the 

ML model during the building process. The appropriate 

epoch, indicating the point at which the loss reaches 

0.04136, was determined through the observation of loss 

size as the epoch increased. For quantitative correlation 

verification, R2 values were extracted for various 

parameters. R2 values, a statistical measure of fit, were 

checked for each parameter—SS (0.7738), Vth (0.9933), 

Imin (0.5608), and Von (0.9938), as shown in Fig. 3(b). 

Comparing the R2 values for each parameter reveals a 

strong correlation between WFV and Vth,, Von, while the 

relationship with Imin and SS is less shown. Vth and Von 

exhibit higher R2 values than SS and Imin. With sufficient 

data, the model could approach an ideal state for 

predicting all parameters accurately. 

III. FINDING THE DETAILED CAUSE 

Building upon the findings in Section 2 regarding the 

association between WFV, Von, and Vth, mitigating the 

impact on WFV has become a key focus. In TFET, Von is 

influenced by a current at the point where BTBT is 

maximized. To identify a more valuable input parameter, 

it is essential to locate the area with maximized BTBT. In 

Fig. 1(c), the gate is segmented into four areas designated 

as gate 1, 2, 3, and 4 from the source (far right) of the 

structure. To assess the impact of each gate region on Von 

using ML, two gates were grouped together. These 

groups of the gates served as the input for the ML model, 

and evaluating the R2 value elucidates the correlation 

 

Fig. 3. (a) Loss of ML model from each epoch; (b) R2 value of each output parameters. 
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between Von and the group. 

Sixteen parameters from the gates and eight 

parameters from the conduction and valence bands in the 

energy diagram were selected as input, while two 

parameters (Von, Vth) were designated as the output. The 

dense layer architecture was configured as 24 - 16 - 8 - 2, 

utilizing the ReLU function [25]. The ADAM optimizer 

was employed for precise error correction, with a 

learning rate set to 0.001. 

The comparison of R2 values among different gate 

groups revealed that gate 1 and gate 2 exhibit a 

substantial correlation with Von, as depicted in Fig. 4(a). 

Notably, the group containing gate 2 demonstrated R2 

values consistently at or above 0.9, indicating a robust 

correlation with Von. This outcome highlights the 

significant influence of gate 2 on Von. Considering that a 

significant portion of current in TFET is attributed to 

BTBT, as illustrated in Fig. 4(b) for an approximate gate 

voltage (Vg = 0.5 V) estimating Von, BTBT primarily 

occurs at gate 1 and gate 2. This method enables the 

identification of the relative area contributing to the 

effect. The results confirm that ML models can 

effectively discern causative factors, facilitating 

optimization by establishing associ ations with each 

parameter. 

IV. MULTIPLE CAUSES OF VARIATION 

To validate the previously developed ML model, it is 

crucial to examine whether it accounts for various effects. 

In contrast to MOSFETs, TFETs have been shown to 

receive inversion carriers from the drain. This inversion 

charge inhibits channel band bending, a phenomenon 

influenced by randomly distributed metal grains in the 

gate [26]. Additionally, when the Vd is low, several 

additional phenomena come into play. These include 

ambipolar characteristics, directly influenced by BTBT, 

and super-linear onset, observable by examining 

ambipolar current (IAMB), Vth, and Von [27]. 

The ML model for this investigation derived input 

from the structure and energy diagram, similarly shown 

as in Section 2. However, the output parameters were 

derived from Fig. 5(a) (Id-Vg curve when Vd = 0.1 V). 

The selected output parameters for the ML model were 

IAMB, Vth, and Von, with IAMB measured when Vg = -1 V. 

The built model exhibited a high R2 value for predictions 

at each parameter, as shown in Fig. 5(b)-(d). The R2 

values for each parameter— IAMB (0.9901), Vth (0.9901), 

and Von (0.9927)—demonstrate that the ML model can 

accurately predict various phenomena with a high level 

of confidence. 

V. PREDICTION OF EXCEPTIONAL SITUATION 

While most device structures exhibit average 

performance, devices such as CMOS or static random 

access memory (SRAM) can face performance 

challenges in exceptional situations [28]. This paper 

leverages ML to predict and address such exceptional 

scenarios that deviate significantly from the norm. ML 

 

Fig. 4. (a) R2 value of each gate areas; (b) Electron BTBT generation of channel and separated gate area. 
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models, developed in Section 2 and Section 5, were 

trained using data from Fig. 5(e). 

Each gate in the ML model comprises grains with a 

40% probability, featuring 4.4-eV grains whereas typical 

structures consist of 12 to 13 (average of 12.678) grains. 

To simulate an exceptional situation, 10 new structures 

were created, each with a 75% probability of acquiring 

4.4-eV grains. In the existing structures, several 4.4-eV 

grains were located at positions 26, 22, 24, 20, 27, 24, 24, 

26, 20, and 26, typically situated in the red part of Fig. 

5(e). These structures were not part of the ML model 

training. 

To make predictions, the grains and energy diagram of 

the structures were normalized using MinMaxScaler, a 

process consistent with the existing ML model inputs. 

The prediction of the input and output of the ML model 

was also normalized. Comparing the predicted Von with 

the actual results, a high R2 value of 0.9927 was achieved 

[Fig. 5(f)]. This outcome demonstrates that the ML 

model can effectively predict various exceptional 

situations.  

VI. CONCLUSIONS 

This study proposes the optimization of the ML model 

to establish a correlation between WFV and the variation 

of Von in TFETs. Through the optimization and analysis 

of the ML model, it becomes evident that TFET 

performance is more affected by the number of gate 

regions than by the entire grain structure of the gate. This 

implies that only a few grains exhibit a high correlation 

with TFET's Von. The ML model, relying on diverse data 

and exhibiting a strong dependence on parameters like Vd, 

demonstrates the potential for identifying multiple 

influencing factors. Furthermore, the ML model predicts 

that a gate with a higher proportion of 4.4 eV WF is 

likely to provide insights into the underlying causes. 

Ultimately, the results indicate the potential for 

prediction and analysis in the semiconductor process or 

simulation, particularly with sufficient and diverse data. 
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